Углеродные нанотрубки и нановолкна. Нанотехнологии: Углеродные нанотрубки

И другими похожими структурами, которые можно назвать общим термином углеродные каркасные структуры . Что же это такое?

Углеродные каркасные структуры - это большие (а иногда и гигантские!) молекулы, состоящие исключительно из атомов углерода. Можно даже говорить, что углеродные каркасные структуры - это новая аллотропная форма углерода (в дополнение к давно известным: алмазу и графиту). Главная особенность этих молекул - это их каркасная форма: они выглядят как замкнутые, пустые внутри "оболочки". Самая знаменитая из углеродных каркасных структур - это фуллерен C 60 , абсолютно неожиданное открытие которого в 1985 году вызвало целый бум исследований в этой области (Нобелевская премия по химии за 1996 год была присуждена именно первооткрывателям фуллеренов Роберту Керлу, Гарольду Крото и Ричарду Смалли). В конце 80-х, начале 90-х годов, после того как была разработана методика получения фуллеренов в макроскопических количествах, было обнаружено множество других, как более легких, так и более тяжелых фуллеренов: начиная от C 20 (минимально возможного из фуллеренов) и до C 70 , C 82 , C 96 , и выше.

Однако разнообразие углеродных каркасных структур на этом не заканчивается. В 1991 году, опять-таки совершенно неожиданно, были обнаружены длинные, цилиндрические углеродные образования, получившие названия нанотрубок. Визуально структуру таких нанотрубок можно представить себе так: берем графитовую плоскость, вырезаем из нее полоску и "склеиваем" ее в цилиндр (предостережение: такое сворачивание графитовой плоскости - это лишь способ представить себе структуру нанотрубки; реально нанотрубки растут совсем по-другому). Казалось бы, что проще - берешь графитовую плоскость и сворачиваешь в цилиндр! - однако до экспериментального открытия нанотрубок никто из теоретиков их не предсказывал! Так что ученым оставалось только изучать их - и удивляться!

А удивительного было много. Во-первых, разнообразие форм: нанотрубки могли быть большие и маленькие, однослойные и многослойные, прямые и спиральные. Во-вторых, несмотря на кажущуюся хрупкость и даже ажурность, нанотрубки оказались на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений , превышающих критические, нанотрубки также ведут себя экстравагантно: они не "рвутся" и не "ломаются", а просто-напросто перестраиваются! Далее, нанотрубки демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств. Например, в зависимости от конкретной схемы сворачивания графитовой плоскости, нанотрубки могут быть и проводниками , и полупроводниками ! Может ли какой-либо иной материал с таким простым химическим составом похвастаться хотя бы частью тех свойств, которыми обладают нанотрубки?!

Наконец, поражает разнообразие применений, которые уже придуманы для нанотрубок. Первое, что напрашивается само собой, это применение нанотрубок в качестве очень прочных микроскопических стержней и нитей. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Правда, в настоящее время максимальная длина нанотрубок составляет десятки и сотни микронов - что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина нанотрубок, получаемых в лаборатории, постепенно увеличивается - сейчас ученые уже вплотную подошли к миллиметровому рубежу: см. работу [Z. Pan et al, 1998 ], где описан синтез многослойной нанотрубки длиной в 2 мм. Поэтому есть все основания надеяться, что в скором будущем ученые научатся выращивать нанотрубки длиной в сантиметры и даже метры! Безусловно, это сильно повлияет на будущие технологии: ведь "трос" толщиной с человеческий волос, способный удерживать груз в сотни килограмм, найдет себе бесчисленное множество применений.

Другой пример, когда нанотрубка является частью физического прибора - это "насаживание" ее на острие сканирующего туннельного или атомного силового микроскопа . Обычно такое острие представляет собой остро заточенную вольфрамовую иглу, но по атомным меркам такая заточка все равно достаточно грубая. Нанотрубка же представляет собой идеальную иглу диаметром порядка нескольких атомов. Прикладывая определенное напряжение, можно подхватывать атомы и целые молекулы, находящиеся на подложке непосредственно под иглой, и переносить их с места на место.

Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. Уже сейчас созданы опытные образцы полевых транзисторов на основе одной нанотрубки: прикладывая запирающее напряжение в несколько вольт, ученые научились изменять проводимость однослойных нанотрубок на 5 порядков!

Еще одно применение в наноэлектронике - создание полупроводниковых гетероструктур, т.е. структур типа металл/полупроводник или стык двух разных полупроводников. Теперь для изготовления такой гетероструктуры не надо будет выращивать отдельно два материала и затем "сваривать" их друг с другом. Все, что требуется, это в процессе роста нанотрубки создать в ней структурный дефект (а именно, заменить один из углеродных шестиугольников пятиугольником). Тогда одна часть нанотрубки будет металлической, а другая - полупроводником!

Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона!

С помощью того же атомного микроскопа можно производить запись и считывание информации с матрицы, состоящей из атомов титана, лежащих на -Al 2 O 3 подложке. Эта идея уже также реализована экспериментально: достигнутая плотность записи информации составляла 250 Гбит/см 2 . Однако в обоих этих примерах до массового применения пока далеко - слишком уж дорого обходятся такие наукоемкие новшества. Поэтому одна из самых главных задач здесь - разработать дешевую методику реализации этих идей.

Пустоты внутри нанотрубок (и углеродных каркасных структур вообще) также привлекали внимание ученых. В самом деле, а что будет, если внутрь фуллерена поместить атом какого-нибудь вещества? Эксперименты показали, что интеркаляция (т.е. внедрение) атомов различных металлов меняет электрические свойства фуллеренов и может даже превратить изолятор в сверхпроводник ! А можно ли таким же образом изменить свойства нанотрубок? Оказывается, да. В работе [K.Hirahara et al, 2000 ] ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния ! Электрические свойства такой необычной структуры сильно отличались как от свойств простой, полой нанотрубки, так и от свойств нанотрубки с пустыми фуллеренами внутри. Как, оказывается, много значит валентный электрон , отдаваемый атомом металла во всеобщее распоряжение! Кстати, интересно отметить, что для таких соединений разработаны специальные химические обозначения. Описанная выше структура записывается как Gd@C 60 @SWNT, что означает "Gd внутри C 60 внутри однослойной нанотрубки (Single Wall NanoTube)".

В нанотрубки можно не только "загонять" атомы и молекулы поодиночке, но и буквально "вливать" вещество. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами , то есть она как бы втягивает в себя вещество. Таким образом, нанотрубки можно использовать как микроскопические контейнеры для перевозки химически или биологически активных веществ: белков , ядовитых газов, компонентов топлива и даже расплавленных металлов. Попав внутрь нанотрубки, атомы или молекулы уже не могут выйти наружу: концы нанотрубок надежно "запаяны", а углеродное ароматическое кольцо слишком узкое для большинства атомов. В таком виде активные атомы или молекулы можно безопасно транспортировать. Попав в место назначения, нанотрубки раскрываются с одного конца (а операции "запаивания" и "распаивания" концов нанотрубок уже вполне под силу современной технологии) и выпускают свое содержимое в строго определенных дозах. Это - не фантастика, эксперименты такого рода уже сейчас проводятся во многих лабораториях мира. И не исключено, что через 10-20 лет на базе этой технологии будет проводиться лечение заболеваний: скажем, больному вводят в кровь заранее приготовленные нанотрубки с очень активными ферментами , эти нанотрубки собираются в определенном месте организма некими микроскопическими механизмами и "вскрываются" в определенный момент времени. Современная технология уже практически готова к реализации...

Считается, что первооткрывателем углеродных нанотрубок является сотрудник японской корпорации NEC Сумио Ииджима, который в 1991 году наблюдал структуры многослойных нанотрубок при изучении под электронным микроскопом осадков, которые образовывались в процессе синтеза молекулярных форм чистого углерода, имеющего клеточную структуру.

Классификация

Основная классификация нанотрубок проводится по количеству составляющих их слоев.

Однослойные нанотрубки (single-walled nanotubes, SNWTs) - простейший вид нанотрубок. Большинство из них имеют диаметр около 1 нм при длине, которая может быть во много тысяч раз больше. Структуру однослойных нанотрубок можно представить как «обертывание» гексагональной сетки графита (графена), основу которой составляют шестиугольники с расположенными в вершинах углов атомами углерода, в бесшовный цилиндр. Верхние концы трубок закрыты полусферическими крышечками, каждый слой которых составлен из шести- и пятиугольников, напоминающих структуру половины молекулы фуллерена.

Рисунок 1. Графическое изображение однослойной нанотрубки

Многослойные нанотрубки (multi-walled nanotubes, MWNTs) состоят из нескольких слоев графена, сложенных в форме трубки. Расстояние между слоями равно 0.34 нм, то есть такое же, как и между слоями в кристаллическом графите.

Существуют две модели, использующиеся для описания их структуры. Многослойные нанотрубки могут представлять собой несколько однослойных нанотрубок, вложенных одна в другую (так называемая «матрешка»). В другом случае, один «лист» графена оборачивается несколько раз вокруг себя, что похоже на прокрутку пергамента или газеты (модель «пергамента»).

Рисунок 2. Графическое изображение многослойной нанотрубки (модель «матрешка»)

Методы синтеза

Наиболее распространенными методами синтеза нанотрубок являются электродуговой метод, лазерная абляция и химическое осаждение из газовой фазы (CVD).

Дуговой разряд (Arc discharge) — сущность этого метода состоит в получении углеродных нанотрубок в плазме дугового разряда, горящей в атмосфере гелия, на технологических установках для получения фуллеренов. Однако здесь используются другие режимы горения дуги: низкие плотности тока дугового разряда, более высокое давление гелия (~ 500 Торр), катоды большего диаметра.

Для увеличения выхода нанотрубок в продуктах распыления в графитовый стержень вводится катализатор (смеси металлов группы железа), изменяется давление инертного газа и режима распыления.

В катодном осадке содержание нанотрубок достигает 60%. Образующиеся нанотрубки длиной до 40 мкм растут от катода перпендикулярно его поверхности и объединяются в цилиндрические пучки диаметром около 50 км.

Лазерная абляция (Laser ablation)

Этот метод был изобретен Ричардом Смалли и сотрудниками Rice University» и основан на испарении графитовой мишени в высокотемпературной реакторе. Нанотрубки появляются на охлажденной поверхности реактора как конденсат испарения графита. Водоохлаждаемая поверхность может быть включена в систему сбора нанотрубок.

Выход продукта в этом методе - около 70%. С его помощью получают преимущественно однослойные углеродные нанотрубки с контролируемым посредством температуры реакции диаметром. Однако стоимость данного метода намного дороже остальных.

Химическое осаждение из газовой фазы (Chemical vapor deposition, CVD)

Метод каталитического осаждения паров углерода был выявлен еще в 1959 году, однако до 1993 года никто не предполагал, что в этом процессе можно получить нанотрубки.

В процессе этого метода готовится подложка со слоем катализатора - частиц металла (чаще всего никеля, кобальта, железа или их комбинаций). Диаметр нанотрубок, выращенных таким способом, зависит от размера металлических частиц.

Подложка нагревается примерно до 700 оС. Для инициации роста нанотрубок в реактор вводят два типа газов: технологический газ (например, аммиак, азот, водород и т. д.) и углеродосодержащий газ (ацитилен, этилен, этанол, метан и т. д.). Нанотрубки начинают расти на участках металлических катализаторов.

Этот механизм является наиболее распространенным коммерческим методом производства углеродных нанотрубок. Среди других методов получения нанотрубок CVD наиболее перспективен в промышленных масштабах благодаря наилучшему соотношению в плане цены на единицу продукции. Кроме того, он позволяет получать вертикально ориентированные нанотрубки на желаемом субстрате без дополнительного сбора, а также контролировать их рост посредством катализатора.

Области применения

Углеродные нанотрубки вместе с фуллеренами и мезопористыми углеродными структурами образуют новый класс углеродных наноматериалов, или углеродных каркасных структур, со свойствами, которые значительно отличаются от других форм углерода, таких как графит и алмаз. Однако наиболее перспективными их них являются именно нанотрубки.

Интересуетесь бизнесом в области наноматериалов? Тогда Вас могут заинтересовать

Строение и классификация нанотрубок

Углеродные нанотрубки

Углеродные нанотрубки (carbon nanotubes, CNTs) - молекулярные соединения, принадлежащие классу аллотропных модификаций углерода. Они представляют собой протяженные цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной от одного до нескольких микрон.

Рисунок 8. Углеродная нанотрубка

Нанотрубки состоят из одной или нескольких свернутых в трубку слоев, каждый из которых представляет гексагональную сетку графита (графен), основу которой составляют шестиугольники с расположенными в вершинах углов атомами углерода. Во всех случаях расстояние между слоями равно 0,34 нм, то есть такое же, как и между слоями в кристаллическом графите.

Верхние концы трубок закрыты полусферическими крышечками, каждый слой которых составлен из шести- и пятиугольников, напоминающих структуру половины молекулы фуллерена .

Считается, что первооткрывателем углеродных нанотрубок является сотрудник японской корпорации NEC Сумио Ииджима, который в 1991 году наблюдал структуры многослойных нанотрубок при изучении под электронным микроскопом осадков, которые образовывались в процессе синтеза молекулярных форм чистого углерода, имеющего клеточную структуру.

Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, т.е. поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода.

Параметр, указывающим координаты шестиугольника, который в результате сворачивания плоскости должен совпасть с шестиугольником, находящимся в начале координат, называется хиральностью нанотрубки. Хиральность нанотрубки определяет ее электрические характеристики.

Как показали наблюдения, выполненные с помощью электронных микроскопов, большинство нанотрубок состоят из нескольких графитовых слоев, либо вложенных один в другой, либо навитых на общую ось.

Однослойные нанотрубки (single-walled nanotubes, SWNTs) – простейший вид нанотрубок. Большинство из них имеют диаметр около 1 нм при длине, которая может быть во много тысяч раз больше.

Рисунок 9. Модель однослойной нанотрубки.

Такая трубка заканчивается полусферическими вершинами, содержащими наряду с правильными шестиугольниками, также по шесть правильных пятиугольников.

Структура однослойных нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего, это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы .



Рисунок 10. Модели поперечного сечения многослойных нанотрубок

Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций, как в продольном, так и в поперечном направлении. Возможные разновидности поперечной структуры многослойных нанотрубок представлены нарисунок 10.

Структура типа "русской матрешки" (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга однослойных нанотрубок(рисунок 10 а). Последняя из приведённых структур (рисунок 10 б), напоминает свиток. Для приведённых структур расстояния между соседними графитовыми слоями близко к величине 0,34 нм, т.е. расстоянию между соседними плоскостями кристаллического графита. Реализация той или иной структуры в конкретной экспериментальной ситуации зависит от условий синтеза нанотрубок.2.2 Получение углеродных нанотрубок

Наиболее распространенными методами синтеза нанотрубок являются электродуговой метод, лазерная абляция и химическое осаждение из газовой фазы (CVD).

Дуговой разряд (Arc discharge)- сущность этого метода состоит в получении углеродных нанотрубок в плазме дугового разряда, горящей в атмосфере гелия, на технологических установках для получения фуллеренов. Однако здесь используются другие режимы горения дуги: низкие плотности тока дугового разряда, более высокое давление гелия (~ 500 Торр), катоды большего диаметра. Чтобы получить максимальное количество нанотрубок, ток дуги должен быть 65-75 А, напряжение - 20-22 В, температура электронной плазмы - порядка 4000 К. В этих условиях графитовый анод интенсивно испаряется, поставляя отдельные атомы или пары атомов углерода, из которых на катоде или на охлажденных водой стенках камеры и формируются углеродные нанотрубки .

Для увеличения выхода нанотрубок в продуктах распыления в графитовый стержень вводится катализатор (смеси металлов группы железа), изменяется давление инертного газа и режима распыления.

В катодном осадке содержание нанотрубок достигает 60%. Образующиеся нанотрубки длиной до 40 мкм растут от катода перпендикулярно его поверхности и объединяются в цилиндрические пучки диаметром около 50 нм .

Типичная схема электродуговой установки для изготовления материала, содержащего нанотрубки и фуллерены, а также другие углеродные образования, показана на рисунке 11.

Рисунок 11. Схема установки для получения нанотрубок электродуговым методом.

Метод лазерной абляции (Laser ablation) был изобретен Ричардом Смалли и сотрудниками "Rice University" и основан на испарении графитовой мишени в высокотемпературной реакторе. Нанотрубки появляются на охлажденной поверхности реактора как конденсат испарения графита. Водоохлаждаемая поверхность может быть включена в систему сбора нанотрубок. Выход продукта в этом методе – около 70%. С его помощью получают преимущественно однослойные углеродные нанотрубки с контролируемым посредством температуры реакции диаметром. Однако стоимость данного метода намного дороже остальных.

Химическое осаждение из газовой фазы (Chemical vapor deposition, CVD) - метод каталитического осаждения паров углерода был выявлен еще в 1959 году, однако до 1993 года никто не предполагал, что в этом процессе можно получить нанотрубки.

Рисунок 12. Схема установки для получения нанотрубок методом химического осаждения.

В качестве катализатора используется мелкодисперсный металлический порошок (чаще всего никеля, кобальта, железа или их комбинаций), который засыпается в керамический тигель, расположенный в кварцевой трубке. Последняя, в свою очередь, помещается в нагревательное устройство, позволяющее поддерживать регулируемую температуру в области от 700 до 1000°С. По кварцевой трубке продувают смесь газообразного углеводорода и буферного газа. Типичный состав смеси C 2 H 2: N 2 в отношении 1:10. Процесс может продолжаться от нескольких минут до нескольких часов. На поверхности катализатора вырастают длинные углеродные нити, многослойные нанотрубки длиной до нескольких десятков микрометров с внутренним диаметром от 10 нм и внешним - 100 нм. Диаметр нанотрубок, выращенных таким способом, зависит от размера металлических частиц .

Этот механизм является наиболее распространенным коммерческим методом производства углеродных нанотрубок. Среди других методов получения нанотрубок CVD наиболее перспективен в промышленных масштабах благодаря наилучшему соотношению в плане цены на единицу продукции. Кроме того, он позволяет получать вертикально ориентированные нанотрубки на желаемом субстрате без дополнительного сбора, а также контролировать их рост посредством катализатора .

Широкие перспективы использования нанотрубок в материаловедении открываются при капсулировании внутрь углеродных нанотрубок сверхпроводящих кристаллов (например, ТаС). Возможность получения сверхпроводящих кристаллов, капсулированных в нанотрубки, позволяет изолировать их от вредного воздействия внешней среды, например, от окисления, открывая тем самым путь к более эффективному развитию соответствующих нанотехнологий.

Большая отрицательная магнитная восприимчивость нанотрубок указывает на их диамагнитные свойства. Предполагают, что диамагнетизм нанотрубок обусловлен протеканием электронных токов по их окружности. Величина магнитной восприимчивости не зависит от ориентации образца, что связано с его неупорядоченной структурой.

В основе многих технологических применений нанотрубок лежит такое их свойство, как высокая удельная поверхность (в случае однослойной нанотрубки около 600 кв. м. на 1/г), что открывает возможность их использования в качестве пористого материала в фильтрах и т.д.

Материал нанотрубок с успехом может использоваться в качестве несущей подложки для осуществления гетерогенного катализа, причем каталитическая активность открытых нанотрубок заметно превышает соответствующий параметр для замкнутых нанотрубок.

Возможно использование нанотрубок с высокой удельной поверхность в качестве электродов для электролитических конденсаторов с большой удельной мощностью. Углеродные нанотрубки хорошо себя зарекомендовали в экспериментах по использованию их в качестве покрытия, способствующего образованию алмазной пленки.

Такие свойства нанотрубки, как ее малые размеры, меняющаяся в значительных пределах в зависимости от условий синтеза, электропроводность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубку в качестве основы будущих элементов микроэлектроники.

Нанотрубки могут служить основой тончайшего измерительного инструмента, используемого для контроля неоднородностей поверхности электронных схем.

Интересные применения могут получить нанотрубки при заполнении их различными материалами. При этом нанотрубка может использоваться как в качестве носителя заполняющего ее материала, так и в качестве изолирующей оболочки, предохраняющей данный материал от электрического контакта, либо от химического взаимодействия с окружающими объектами.

Прочнее, чем радиальная шина? Все указывает на то, что появление углеродных нанотрубок TUBALL в индустрии шин произведет еще более сильный технический переворот, чем появление кремния в 90-х годах, и сравнится с открытием радиальной шины после войны. Даже небольшое количество этих поразительно маленьких трубок диаметром в один нанометр (1 миллиардная метра), со стенками толщиной всего в один (!) атом углерода, позволяет улучшить характеристики любой резины в невероятных масштабах. История этого изобретения, рожденная в самом сердце Сибири, сколь грандиозна, столь и оригинальна.

В 1945 г. впервые в истории была применена ядерная бомба. Именно тогда люди узнали, что материя является хранилищем огромной энергии. На том этапе главной сложностью оказалось - правильное извлечение энергии. Именно необходимость работы с углеродными нанотрубками на атомном уровне, делает их одновременно как и необычными по своим характеристикам, так и трудными для синтезирования.


Чтобы не умереть идиотом...

Приступить к рассмотрению столь передовых технологий с минимальным багажом знаний – гарантия того, что вы ничего не поймете в этом исследовании, даже если и думаете, что знаете, что такое углерод. Вероятно, уже более чем 500 000 лет назад наши предки начали использовать его для обогрева или приготовления пищи на древесном угле. Примерно 3 века назад, начало использования угля (каменного) и паровой машины ознаменовало наступление эры промышленности. Однако этот доисторический период в истории углерода не имеет никакого отношения к современной нанохимии...

В широком смысле, все, что растет и живет на земле, зависит от углерода. И человек, который на 65% состоит из воды, на 3% из азота, 18% из углерода и на 10% из водорода - прекрасный тому пример. В природе насчитывается более миллиона соединений из комбинации углерода и водорода, не стоит забывать и о том, что после угля основным источником энергии для нас являются углеводороды: в общем, не так легко обойтись без незаменимого углерода.

В естественном состоянии он имеет лишь две кристаллические и очень непохожие друг на друга формы: алмаз и графит. Первый – престижный, чрезвычайно редкий и твёрдый материал, второй – жирный на ощупь, куда менее эксклюзивный вид углерода, добывается в объеме примерно полтора миллиона тонн в год. Мало кто знает, что алмаз с течением времени (очень продолжительного периода!) распадается на графит, который, в конечном счете, является самой устойчивой формой углерода. Мы хорошо знакомы с этим черным или серым минералом, стоит вспомнить, например, китайские чернила или карандашный грифель. Сегодня, помимо всего прочего, графит помогает обеспечить безопасность ядерных электростанций, а также дарит нам миллионы электрических батареек. Именно он является неоспоримым родоначальником всех форм структур из атомов углерода, которые впоследствии будет создавать человек.


От микрометра...

Столь полезные смазочные свойства графита, напоминающего по своей структуре углеродный «тысячелистник» или «тысячеслойник», обусловлены той простотой, с которой слои скользят друг по другу. Эти плоские и чрезвычайно тонкие слои, по своей форме напоминают «пчелиные соты», которые состоят из плотно прилегающих друг к другу колец шестиугольной формы, вершина каждого из которых является атомом углерода, связанного с тремя своими соседями. Существуют даже слои толщиной в один атом! Такая особая структура облегчает (все относительно!) доступ к атомам углерода. Об огромном потенциале графита давно уже известно, но использованию всех положительных качеств графита мешает целый ряд проблем, возникающих при работе с графитом на атомном уровне. Первый подводный камень заключается в том, что четко разглядеть подобные структуры можно будет только после появления новых мощных электронных микроскопов с высоким разрешением.

Первоначально химики рассматривали углерод через призму той простоты, с которой он превращается в волокно. При соединении длинных и плоских микрокристаллов и выравнивании их по параллельным линиям удается синтезировать волокна диаметром в 5-10 микрон. Сборка 1, 3, 6, 12, 24, 48 тысяч таких углеродных волокон в зависимости от типа использования, для которого они были предназначены,
помогает синтезировать удивительно прочные нити, несмотря на их невесомость. Стремясь восстановить текстильную промышленность, пострадавшую в ходе войны, с 1959 года японцы занялись разработкой углеродного волокна. Первый исследовательский центр превратится позднее в фирму Toray, до сих пор являющуюся одной из крупнейших мировых компаний.

Краткий обзор исключительных качеств одностенных нанотрубок: проводящие свойства лучше, чем у меди, при этом они в пять раз легче и в 100 раз прочнее стали, их длина в миллион раз больше диаметра, а 1 грамм развитой поверхности покрывает площадь 2 баскетбольных площадок!

Эти новые волокна не совсем пригодились для традиционного текстиля, но, принимая во внимание их исключительные механические свойства, они были быстро оценены по достоинству в военной и авиационной промышленности. Сегодня гражданские самолеты последнего поколения на более чем 50 % состоят из углеродного волокна, а A380 и вовсе не смог бы летать без его помощи... И везде, где требуется эффективность и небольшой вес – спортивные товары, парусники и гоночные автомобили, протезы и т.д. – уже нельзя обойтись без углеродного волокна.

...к нанометру

Однако пришлось ждать 1985 года, когда человек создал 3-ю кристаллическую форму углерода, на этот раз, совершенно искусственную, – фуллерены. Кардинально меняется масштаб и начинается погружение в глубины бесконечно малых величин, на смену микрону волокна приходит нанометр. Префикс «нано» («найн» по-гречески) означает 1 миллиардную часть метра. Когда играешь с атомами в нанометрическом масштабе, то приходится делить измерения в микронах на 1 000! Открытие фуллеренов произошло в лаборатории, при попытке астрофизиков найти ответ на вопрос о природе происхождения обнаруженных в космосе длинных углеродосодержащих цепочек.

Опираясь на свои знания о молекулах, ограниченных двухмерными плоскими слоями графита, химики смогли создать новые 3-D молекулы, по-прежнему состоящие на 100 % из углерода, но принимающие более разнообразные и интересные формы: сфера, эллипсоиды, трубки, кольца и т.д. Какой же при этом был использован метод создания? Испарение в нейтральной среде графитового диска посредством лазерной абляции в весьма специфических условиях. Сама идея, как и ее реализация, по силам далеко не каждому... Что и было официально признано в 1996 г., при вручении Нобелевской премии по химии, англо-американской команде изобретателей в составе Крото (Kroto), Кёрла (Curl), Смолли (Smalley). И это было справедливо.

Самый первый полученный при таком методе генерации продукт первоначально имел форму футбольного мяча! Также как и у мяча, структура была разбита на 20 шестиугольников, и точно также как и у графита, была соединена с 12 пятиугольниками. Такая структура, названная C60, толщиной всего в 0,7 нанометров, имеет внутреннее пространство всего в один нанометр, что в 200 миллионов раз меньше, чем настоящий футбольный мяч! Впрочем, именно эта особенность, связанная с англо-саксонской культурой команды исследователей, и приведет к присвоению весьма оригинального названия продукту. В честь архитектора Бакминстера Фуллера, изобретателя геодезических сфер, какое-то время C60 именовался «футбаллен», потом стал первым бакминстерфуллереном, а позднее сократился (к счастью!) до фуллерена.

После того как дверца к созданию инновационного материала была отворен, процесс пошел: многочисленные исследовательские группы бросились получать фуллерены, изобретая различные методы его синтеза. Стали появляться самые разнообразные формы фуллерена, более эффективные, чем предыдущие, с качествами настолько различными, насколько и выдающимися! Сейчас считается, что существует более 250 000 видов фуллеронов(и это еще не конец!), которые могут оказаться полезными в любой отрасли промышленности: фармацевтике, косметике, электронике, фотогальванике, смазочных материалах и т.д. После денег, наночастицы являются самыми используемыми вещами в мире.

А потом появляются нанотрубки и, наконец, графен.


Вслед за C60, удалось получить «футбольные мячи» из 70, 76, 84, 100, 200 атомов, и даже 20, и это было лишь начало. Под воздействием температуры молекулы углерода делятся (стоит только научиться это делать), а составляющие их атомы воссоединяются в бесконечном многообразии форм, и кажется, что возможны любые конфигурации. Мячи, мегатрубки, нанотрубки, димеры, полимеры, нанолуковицы и т.д., огромная семья фуллеренов постоянно растет, но именно небольшие нанотрубки и по сей день остаются главной надеждой на серьезное промышленное развитие.

Если 1959 и 1985 годы – общепризнанные даты рождения углеродного волокна и фуллеренов, то нанотрубки появились где-то в промежутке между 1991 и 1993 годами. В 1991 году, первооткрыватель, японец Сумио Иидзима (Sumio Iijima, NEC) во время своих исследований синтеза фуллеренов получил первые многослойные нанотрубки, количество слоев графена в которых колебалось от 2 до 50. Он повторно получает их в 1993 г., но теперь это нанотрубки с одной стенкой, и одновременно этого добивается Дональд С. Бетьюн, IBM (Donald S. Bethune), каждый своим собственным способом.

На этом этапе современной истории углерода появляется материал, который формирует стенки одностенной нанотрубки (single wall), то есть графен. Это знаменитый двухмерный кристалл, c плоским слоем в форме пчелиных сот и толщиной всего в один атом, наслоение которого и образует графит. На деле же то, что казалось простым, учитывая свое природное происхождение, таковым не являлось, поэтому пришлось ждать 2004 года, когда голландец Андре Гейм (André Geim) смог выделить этот ковер (или скорее сетку?) толщиной в один атом одним оригинальным способом. Он использовал клейкую ленту для снятия материи слой за слоем до получения слоя толщиной в 1 атом. Были открыты, конечно же, и другие методы получения графена, но за этот Гейм в 2010 г. разделил Нобеля с Константином Новоселовым, британцем российского происхождения, который, как и он, работал в Великобритании.

С общепринятой точки зрения, в будущем графен произведёт революцию в нашей жизни. По мнению некоторых, это – технологическое потрясение, сравнимое по своему размаху с переходом от бронзового века к веку железному! Графен, который является одновременно и гибким и эластичным, проводит электричество лучше, чем медь. Бесцветный графен в 6 раз более легкий, чем сталь, а также в 100 или даже 300 раз более прочный. Этому уникуму все по плечу: несмотря на свои размеры он может усилить практически все. Он в 1 миллион раз тоньше волоса - 3 миллиона слоев графена, сложенные вместе, не толще 1 мм. Тем не менее, вся планета, начиная с Европы тратит миллиарды на то, чтобы научиться синтезировать такие слои до нужного размера по приемлемым ценам. К сожалению, далеко не всем пока удалось этого достичь!


Одностенная нанотрубка

А пока запуск серийного синтеза графена не налажен, уже другая форма фуллерена со стенками из графена начала набирать обороты: нанотрубка. Изначально Иидзима (Iijima) получил ее с помощью двух графитовых электродов: когда электрический ток создает плазму 6000° C: анод (+) испаряется, и на катоде (-) образуется черноватый осадок, то есть нанотрубки. Помимо данного метода «распыления в плазме дугового разряда» есть и другие: при высокой и средней температуре, в газообразном состоянии. Результаты при этом получаются разные, хотя, сразу после своего освобождения, атомы углерода сразу начинают воссоединяться, образуя причудливые формы. Таким образом, большинство синтезированных нанотрубок, как наследники семьи фуллеренов, «закрыты» с торцов одной или двумя полусферическими шапками. Эти «половинки футбольного мяча» можно сохранить или снять, чтобы открыть трубку с обоих торцов и заполнить другими продуктами и сделать ее еще интереснее.

Многостенные нанотрубки (MW, multiwall) напоминают по своей структуре русские матрешки: множество трубок с уменьшающимся диаметром, закрученных друг в друге, или же один слой, скручивающийся вокруг себя, как свиток. Встречаются также и пробелы, дырки в ячеистых или других структурах, имеющих по 5 или 7 сторон, и порой примеси, осадки от металлических катализаторов, без которых не обойтись в этой операции: тогда, перед использованием таких нанотрубок, требуется их очищение или восстановление. Одностенные (SW, single wall) могут также иметь очень разную структуру (спиралевидную или нет), что дает им большое преимущество по части механических или электрических характеристик и придает им свойства проводника или полупроводника и т.д.

Освоение метода синтеза нанотрубок – это не путешествие по длинной и спокойной реке, а чрезвычайно сложный процесс, заключающийся в работе с очень небольшим объемом вещества при высоком уровне затрат. До сих пор возникает немалое количество трудностей, и обойти их по-прежнему весьма непросто.Это выяснилось в 2013 году, когда химический гигант Bayer потерял много денег, закрыв, спустя всего три года после открытия, свой завод в Леверкузене по синтезу 200 тонн нанотрубок в год. Похоже, что к такому решению подтолкнула техническая (углеродное волокно и кевлар все еще в строю) и коммерческая конкуренция, а также переоценка спроса, как по его объему, так и темпам роста.

OCSiAl, дитя силиконовой тайги

Как многие великие современные изобретения, имеющие многочисленных создателей, открытие нанотрубок принадлежит не только Иидзиме (Iijima) и Бетьюну (Bethune). Многие команды работали над этим вопросом, порой они даже не были знакомы друг с другом и использовали разные методы. Более внимательное изучение истории вопроса свидетельствует о том, что в 1952 г. советские ученые Радушкевич и Лукьянович уже проводили исследования над трубками размером 50 нанометров, а в 1976 году Оберлин (Oberlin), Эндо (Endo) и Койяма (Koyama) исследовали полые волокна и однослойные углеродные нанотрубки (single wall nano carbon tubes, - сокращенно ОСУНТ). В 1981 г. советские ученые получили изображение скручивающегося графена, одностенных трубок в диапазоне от 0,6 до 6 нм.

Холодная война и охрана промышленных секретов замедляли распространение информации о нанотрубках, что объясняет появление на мировом рынке российской фирмы OCSiAl, расположенной в Академгородке, исследовательском городе в 20 км от Новосибирска, в самом сердце Сибири. Его задумал и создал в 1957 г. академик Лаврентьев, доктор физико-математических наук. Никита Хрущев покровительствовал созданию наилучших условий для жизни и работы элиты советской науки. Заброшенный из-за распада СССР Академгородок возродился позднее в новой, уже более современной и капиталистической форме. Этот город с населением 60 000 жителей является на сегодняшний день местом обитания стартапов масштабом в мировой уровень. В 2006 году в нем был создан новый технопарк. Динамика, креативность и высокая концентрация передовых предприятий позволяют называть Академгородок «Силиконовой тайгой» – по аналогии с Силиконовой долиной Калифорнии...

Само название OCSiAl – намек на химические символы основных элементов, с которыми работает предприятие: O – кислород, C6 – углерод с его атомным номером 6, Si – кремний, Al – алюминий.


Три мушкетера OCSiAl


Как того требует традиция, мушкетеров основателей OCSiAl было четверо! Даже если и официально Михаил Предтеченский – лишь старший Вице-президент, автор технологии синтеза, он все же ключевая фигура компании и человек будущего. Именно этот ученый и изобретатель смог доработать «плазмохимический» реактор, способный синтезировать одностенные углеродные нанотрубки высочайшего качества в больших объемах, а, значит, по рыночным ценам, чего еще никому доселе не удавалось. К этому ученому, носителю самой передовой технологии, присоединились трое других сооснователей, финансистов и управленцев столь же высокого уровня: Юрий Игоревич Коропачинский, Олег Игоревич Кирилов и проживающий сейчас в Израиле Юрий Зельвенский. Они смогли определить потенциал мирового рынка (оцениваемый в 3 миллиарда долларов!) и собрать 350 миллионов долларов, требующихся для основания компании OCSiAl в 2009 году, а потом в 2013 г. зарегистрировали патенты и построили реактор «Graphetron 1.0 », способный синтезировать 10 тонн одностенных углеродных нанотрубок в год.


« Graphetron 1.0 » был запущен в обращение в 2014 году. А в 2016 году компания уже насчитывала в своем штате 260 человек, из которых 100 человек являются учеными высочайшего уровня, работающими в лабораториях Академгородка. Остальной персонал компании – инженеры и коммерсанты, продающие фирменные нанотрубки под торговой маркой TUBALL по всему миру. Изначально для выхода на все крупные рынки были открыты офисы в Колумбусе, Инчхоне, Мумбае, Шэньчжэне, Гонконге, Москве. Штаб квартира компании расположилась в Люксембурге. Команда состоит из специалистов самого разного профиля, так как существует большое количество отраслей промышленности (и очень разнообразных), продукцию которых может «простимулировать» TUBALL. Технические и коммерческие специалисты уверены в качестве и обширном поле возможностей по применению TUBALL. Маркетинг OCSiAl ставит перед ними достаточно высокую целевую планку. В 2017 году планируется запустить второй реактор, способный синтезировать 50 тонн в год. Краткосрочные прогнозы идут по экспоненте, основываясь на 800 тоннах в 2020 и 3 000 тонн в 2022 году.

И если два первых графетрона начнут синтезировать по 60 тонн в Академгородке с 2018 года, то третий должен, по идее, появиться ближе к Европе и ее основным рынкам. И поскольку согласно основным техническим условиям требуется «много энергии и газа», то уже заключаются пари по поводу будущего месторасположения: почему бы не в Люксембурге, поскольку здесь располагается штаб квартира компании?

Очевидное превосходство

Можно было бы считать такие прогнозы слишком оптимистичными и бояться вылететь в трубу, как это произошло с компанией Bayer, но в Люксембурге никто этого не боится – настолько одностенные углеродные нанотрубки TUBALL превосходят по своим характеристикам многослойные нанотрубки. Именно в этом убеждены Кристоф Сиара (Cristoph Siara), директор по маркетингу и продажам Ocsial Europe, и Жан-Николя Эльт (Jean-Nicolas Helt), ведущий специалист по разработке и поддержке клиентов, эластомеры, ООО OCSiAl Europe. По имени Кристофа Сиара и не скажешь, что он немец. Кристоф получил образование юриста. Живёт во Франции с 1983 г., состоявшиеся в ходе карьеры переходы из одной передовой отрасли в другую дали ему надлежащий опыт, позволяющий с пониманием дела разбираться в самых сложных технологиях. Когда Кристоф Сиара говорит о нанотрубках, то его можно принять за настоящего химика. Инженер Жан-Николя Эльт родом из Франции. Он получил диплом по физике сред в университете Нанси, затем в ESEM Орлеана. Благодаря своему блестящему образованию он смог присоединиться к компании Goodyear в Люксембурге. За 17 лет работы он может похвастаться обладанием нескольких серьезных достижений в области шинной промышленности для тяжелых грузовиков и легковых автомобилей. В 2015 году он пришел в OCSiAl как менеджер проекта, именно он сказал, что нанотрубки TUBALL могут привнести что-то ценное в шинную промышленность.

Кристоф Сиара объясняет, что появление одностенных углеродных нанотрубок TUBALL – это значимый прорыв для индустрии, если проводить сравнение с их предшественниками - многостенными нанотрубками. При своем диаметре от 25 до 40 нм, состоящие из нескольких скрученных слоев, эти многослойные нанотрубки являются достаточно жесткими по своей природе, что оказало негативное воздействие на их механические свойства. В отличие от многостенных нанотрубок, одностенные углеродные нанотрубки TUBALL – тонкие, порядка 1,5 нм, и очень длинные > 5 микрон: «Они в 3 000 раз больше в длину, чем в ширину, что становится понятнее на таком примере: это ваш садовый поливальный шланг длиной в 100 метров!».

Значит, еще и лингвистическая сторона вопроса, ведь наименования «серпантин», «лапша», «полое и длинное углеродное волокно» выглядят куда более подходящими, чем трубка. Но все же нанотрубка – куда проще!

Другие аспекты, по которым у TUBALL нет соперников: его слой толщиной 1 нм абсолютно ровный, аморфный углерод < 10 %, остаточные неорганические примеси (Fer) < 15 % заключены в капсулах, то есть не действуют. В отличие от своих конкурентов TUBALL не требует никакой очистки. Кроме того к отличительным чертам нанотрубок TUBALL можно отнести: содержание углерода > 85 %, отношение полос G/D (Рамановская спектрометрия) > 70, что подтверждает превосходную проводимость. Все результаты подтверждены независимыми лабораториями, одной из которых является компания Intertek (май 2014).

Невероятный рост и значительное улучшение всех параметров на примере герметичного уплотнения из синтетического нитрильного каучука.

Вся разница в процессе

«Graphetron 1.0 » Михаила Предтеченского, – вероятно, одна из тех машин, которые произведут революцию в 21-м веке. Речь идет о реакторе, способном перерабатывать большие объемы с использованием прекурсоров и недорогих катализаторов. Как это работает? Это абсолютный секрет, который очень хорошо охраняется. Кристоф Сиара и Жан-Николя Эльт со смехом заверили, что они ничего об этом не знают и никогда и не узнают. А самой первой из всех бумаг для приема на работу, которую они подписали, как и весь персонал, было соглашение о неразглашении! « Graphetron 1.0 » собираются показать во время научной конференции в ноябре, но, держим пари, ничего это нам не даст. Но самое важное то, что он позволяет наладить непрерывный поток синтеза одностенных углеродных нанотрубок высокого качества по разумным ценам. Существует оценка, что эти ежегодные 10 тонн представляют сегодня 90 % мирового синтеза одностенных нанотрубок. С 2017 года компания планирует начать синтезировать на 50 тонн нанотрубок больше!

Цены на продукты TUBALL? – Об этом запрещено говорить. Коммерческая тайна. Только вот брошюры компании его раскрывают: есть ощущение, что это очень далеко от верных оценок, но, по крайне мере, дает представление о примерной стоимости нанотрубок: отправка из Новосибирска стоит 8 долларов США за грамм при небольшом объеме заказа, 2 доллара США – при крупном заказе. OCSiAl скромно заверяет, что снизил цену, как минимум, в 25 раз.

Эта неистовая гонка по увеличению объемов производства объясняется многофункциональностью TUBALL. OCSiAl продает не просто углеродные нанотрубки, а практически универсальный аддитив, способный обеспечить взрывной рост характеристик примерно 70 % полезных материалов на нашей планете.

Универсальный аддитив, невероятные характеристики

Упоминание о свойствах TUBALL – это практически то же самое, как и делать шпагат: чем дальше погружаешься в глубины, различимые лишь под микроскопом, тем выше подбираешься к вершинам эффективности! Пройдемся кратко: его термоустойчивость сохраняется до 1 000°C, он в 100 раз крепче стали, а его площадь превышает всякое разумное понимание: 1 грамм развитой поверхности нанотрубки TUBALL покрывает 2 баскетбольные площадки, то есть 3 000 м 2 .

Все это было бы малопригодно без одного дополнительного фундаментального свойства – его удивительной способности к диспергированию. Благодаря очень тонким и длинным трубкам, TUBALL создает многочисленные сети, которые незаметно перемешиваются с другими элементами и делают их сильнее. Таким образом, достаточно какого-то смешного объема TUBALL, от 1/1 000 до 1/10 000 от общего веса, чтобы придать характеристикам материала взрывной рост. Одностенная нанотрубка (SW) является настоящим РЕШЕНИЕМ для осуществления большого числа технологических прорывов 21-го века.


Небольшой пузырек с 1 граммом TUBALL, который в компании OCSiAl кладут в руку посетителя, чтобы тот лучше «оценил» продукт, – гарантия 100 % успеха, когда начинают подробно рассказывать о его содержимом: 1015 штук, то есть 1 000 000 000 000 000 (один миллион миллиардов) трубок! Если их поставить встык друг другу, то полученная длина составит примерно 50 миллионов километров!

Все, на что способен TUBALL, OCSiAl кратко представляет на одной схеме в виде красивого цветка с многочисленными лепестками. Выбирая его свойства, проводимость, прочность, химическая нейтральность, прозрачность и т.д., или складывая их, открываешь большое количество возможные приложений. TUBALL воистину «универсальный усилитель», коим он и претендует быть.

А чтобы облегчить использование проводящей добавки, нанотрубки TUBALL редко поставляются только в порошковом виде. Они предлагаются в куда более удобных вариантах для применения: в виде жидкости, полимера, масла, каучука и т.д. даже в виде суспензии в растворителях. Так обеспечивается простота смешивания и рассеивания. Например, 50 грамм нанотрубок TUBALL, растворенные в 50 кг эпоксидной смолы или полиэфира, сразу обеспечивают материалы проводимостью, что очень практично для полов, которые можно даже делать цветными!

Гибкость – безопасность

Готовые к использованию концентраты имеют и другое преимущество: обеспечение безопасности при работе с нанотрубками. Их первичная форма и очень малый размер позволяют им попадать в самое сердце клеток человеческого тела, поэтому нужно принять меры предосторожности, даже если углерод и не токсичен для человека. Вносимые в матрицу нанотрубки, не могут испариться в атмосфере, что делает их применение безопасным и успокаивает тех, кто страшится канцерогенного воздействия, как от асбеста. Всемирная организация здравоохранения (ВОЗ) предполагает, что нанотрубки похожи на волокна. Тем не менее, характеристики одностенных углеродных нанотрубок TUBALL сильно отличается от характеристик многостенных углеродных нанотрубок, о которых мы упоминали в самом начале. «Чтобы было совсем понятно», резюмирует Кристоф Сиара, «если многостенные углеродные нанотрубки – это гольф-клуб, то одностенные углеродные нанотрубки TUBALL – это поливальный шланг. Твердая форма и наличие шероховатостей позволяют многостенным углеродным нанотрубкам входить в клетку и прикрепляться к ней. Но при этом твердая и негибкая форма многостенных нанотрубок создает ряд проблем, которые можно избежать при применении гибких и длинных одностенных нанотрубок TUBALL, которые благодаря своим характеристикам не проникают в саму клетку.

OCSiAl очень внимательно относится к изучению данной проблемы, поэтому следит за всеми проводимыми в мире исследованиями. В частности, с 2008 года компания наблюдает за работами BAuA, немецкого правительственного института, занимающегося разработкой промышленных норм, и, в частности, определением характеристик продуктов, обеспечивающим безопасность работников. TUBALL был взят в его самой простой форме – в порошке, который покупают 10% заказчиков. Нанотрубки получили положительные результаты по безопасности их применения для окружающей среды. Оставалась лишь одна проблема: никак не удается очистить воздух от нанотрубок посредством фильтрования, потому что благодаря своему слишком малому размеру они ускользают от всех известных нам материалов! А пока идет поиск решения (над ним работают), OCSiAl не забывает о принципе предосторожности, предлагая использовать для порошковой формы TUBALL самые эффективные виды защиты, которые сами по себе уже являются обязательными при работе с самыми опасными химическими реагентами: маску, закрывающую все лицо, комбинезон, перчатки, сапоги. Для жидкого состава вещества достаточно очков, перчаток и комбинезона.

OCSiAl заботится также о целостности жизненного цикла своих продуктов. Новости обнадеживают, поскольку, будучи внедренными в матрицу, а затем в новые материалы, нанотрубки там и остаются. Получив всевозможные степени обеспечения защиты от опасности, которую они могут нести, нанотрубки TUBALL становятся «нормальным» химическим реагентом, который подчиняется самым строгим предписаниям, недавно введённым в действие. Таким образом, с удовольствием, но без особого удивления, OCSiAl получил в октябре сертификат REACH, позволяющей ему отныне поставлять до 10 тонн нанотрубок в год на европейский рынок.

Великая революция шин

С самого момента возникновения шин, все производители только и ищут технологии, которые могли бы усилить характеристики материала. Начиная с применения таких добавок, как глина и тальк, мы дошли до углерода, мы до сих пор стремимся повысить прочность шин. Появление кремния в 1991 год полностью изменило, существующий на рынке расклад. Кремний позволяет придать резине универсальные пропорции, которые подстраиваются под конкретные нагрузки.Кремний стал неотъемлемым условием эффективности шин, но все это ничто в сравнении с тем резким скачком, который произойдет после прихода TUBALL в шинную промышленность.

Жан-Николя Эльт, имеющий за плечами более чем 17-летний опыт работы в компании Goodyear, идет прямо к цели. Схема на странице 53 демонстрирует рассеивание TUBALL в смесях, предназначенных для шин. Слева – две черные частицы углерода, которые выглядят вполне изолированными в полимерном кубе. На центральной картинке показаны результаты по усилению изделия с помощью многостенных углеродных нанотрубок - достаточно коротких, твёрдых и пакетированных. Глядя на картинку можно заметить, что усиление получилось достаточно слабым и неэффективным. Справа – TUBALL в пропорции всего лишь 1/1 000 к общему весу заполняет куб на 100% очень плотной сетью из одностенных углеродных нанотрубок, которые сильно переплетены друг с другом. Таким образом, этот мини-наполнитель имеет большой усиливающий эффект, благодаря тому, что он высокоструктурированный и позволяет увеличить связанность компонентов. В любом случае, такие усиленные связи имеют лучший эффект, позволяя снизить мобильность компонентов, а, значит, и их износ. Вполне логично, что эта 3D сеть из одностенных углеродных нанотрубок формирует второй скелет в резине шины, позволяющий замедлить процесс ее изнашивания. К тому же TUBALL химически нейтральный, потому он более устойчив к жаре, ультрафиолету и загрязнению углеводородами, чем другие исходные компоненты.

«Осторожно», – уточняет Жан-Николя Эльт, «TUBALL точно также справляется с сажей, как и кремний. Шина сохраняет свои базовые характеристики, более того, при добавлении даже в очень небольших количествах одностенных углеродных нанотрубок характеристики начинают значительно улучшаться. Другое преимущество TUBALL состоит в том , что он является чрезвычайно сильным проводником, поэтому возможно сделать покрышку шины на 100% состоящую из кремния, но и при этом и на 100 % проводящую статическое электричество, вместо того, чтобы быть изолировать его. Так отпадает необходимость в использовании полоски резины NdC по экватору покрышки шин премиум-класса, благодаря которой статическое электричество отводится в землю». Это еще один значительный полученный выигрыш.

Схема A. Синие пауки представляют показатели классической смеси, розовые зоны демонстрируют выигрыш, который можно получить, добавив кремний. Схемы, которые следует сравнить со следующей схемой Б, которая рассматривает эту проблему при добавлении TUBALL.

Схема Б. Принцип такой же, что на предыдущей схеме A, шкала величин тоже. Можно сделать вывод, что розовые поверхности, демонстрирующие улучшение характеристик при добавлении TUBALL.

Полимеры с добавлением TUBALL

На полимеры TUBALL оказывает такое же воздействие, как и на усиливающие наполнители. Таким образом, инженеры могут легко разрабатывать шины «а ля карт», добавляя тот или иной полимер, сохраняя ту или иную характеристику, которую нисколько не ухудшит мощное развитие других показателей. Например, недостатки некоторых шин на сухой или мокрой поверхности можно компенсировать с помощью TUBALL. И для мотоциклетных шин тоже окажется хорошим вариантом, так как позволит одновременно улучшить сцепление и износ. «Это может улучшить все, что угодно», – коротко резюмирует Жан-Николя Эльт. Но какова цена? Учитывая незначительный объем для добавления в смесь (несколько тысячных долей от общего веса) и разумную стоимость TUBALL, Жан-Николя Эльт полагает, что стоимость изготовления увеличится с 2 до 3 долларов США за шину, что сравнительно дорого, но терпимо для шин премиум-класса, которые должны первыми принять на вооружение TUBALL, поскольку, для них на первом месте стоит повышение эффективности. И это совершенно точно, потому что большое число производителей уже посматривают в сторону TUBALL, особенно после получения положительных результатов по проведенным в независимых лабораториях испытаний, например, в являющаяся № 1 в мире лаборатории Smithers. Вот тогда и были проверены и подтверждены все заявления OCSiAl, включая и то, что превышение небольших объемов, предписанных TUBALL, не приносит никаких улучшений. «Не нужно добавлять больше, чем нужно», – таков вывод!

В выводе также говорится о том, что дозировать TUBALL для смесей очень просто, поскольку сам процесс не меняется (смешивание, экструзия, варка и т.д.) и нужно лишь открыть бак TUBALL, чтоб перелить его содержимое в смеситель Бенбери. OCSiAl поставляет свой TUBALL MATRIX 603 на рынок уже в форме готового к использованию концентрата - нанотрубок, смешанных с синтезированными каучуками (натуральный, стирол бутадиен, бутадиен-нитрильный и т.д.) плюс технологическое масло на основе этоксилата тридецилового спирта (TDAE), которое чаще остальных используется для покрышек. TUBALL существует также в форме суспензии в огромном количестве растворителей (МЕК, изопропанол, этиленгликоль, этилацетат, N-метилпирролидон, глицерин или даже вода). Идеальные в плане безопасности, эти составы чрезвычайно просты в применении.

Простое и идеальное в применении, это решение может стать еще проще, если добавить TUBALL в полимер в момент его полимеризации: и больше не нужно никаких дополнительных операций во время перемешивания! Этот метод введения в «момент рождения» полимера «перекладывает» проблему с изготовителя на поставщика синтезированного каучука, но OCSiAl и об этом уже задумался, начав сотрудничество с компанией LANXESS. Другими словами, TUBALL подготовился войти в шинную промышленность сразу через две двери, то есть его продвижение пойдет еще стремительнее.

Даже если добавление природных каучуков может происходить только в момент смешивания, применение TUBALL позволит добиться шикарных перспектив даже при его добавлении непосредственно во время самого процесса изготовления в другие синтезированные каучуки, изопрен или нитрил бутадиен. Последний произвел настоящий скачок в индустрии, перейдя на новый уровень прочности прокладок во всех областях... Проще говоря, рынок шин, промышленного каучука (латексные перчатки хирургов перешли на использование TUBALL), полимеров, эластомеров, композитов, аккумуляторов, фотогальваника, гибких экранов, магнитных чернил, антистатического бетона, красок, керамики, меди, полупроводников, витражей, клейких лент и т.д. – это все целевые сферы, где может быть применен TUBALL. И теперь-то мы лучше понимаем все перспективы проекта « Graphetron 50», нацеленного на обеспечение взрывного роста характеристик 70 % уже существующих продуктов в отрасли...

Схема С. Прямая внизу – это классические смеси, зеленая пунктирная линия - смеси с добавлением кремния, синяя же поперечная линия показывает улучшение характеристик шин, при добавлении TUBALL.


Уже конкуренция...

Тем, кто еще сомневается в преимуществах, открывающихся перед производителями шин при применении TUBALL, Жан-Николя Эльт представляет три схемы. Первые две – классические «пауки» , которые сравнивают показатели "эффективности" трех разных видов шин - обычных, улучшенных благодаря кремнию и шин с добавлением TUBALL. Первая таблица (A) визуализирует в виде зон светло-розового цвета, достигнутый благодаря применению кремния прорыв - конечно важный, но еще далекий от воздействия на весь комплекс характеристик шин.


Вторая (Б) основывается на том же принципе, но на этот раз, светло-розовые зоны TUBALL занимают большую часть площади, демонстрируя значительное увеличение характеристик почти по всем параметрам. Более того, удивляют низкие объемы использованного материала: 0,2 % – в концентрате натурального каучука, 0,1 % – для двух других, в форме концентрата масла.

Третья схема (С) уже давно известна в специализированной прессе. Две прямые определяют характеристики смесей «сажи» (внизу, темно-синим) и показатели «кремния», более эффективные, которые выделены зелеными пунктирными линиями. Третья прямая, которая проходит четко сверху визуализирует смеси с добавлением TUBALL - выделены сверху голубым цветом. На графике четко видны преимущества, предоставляемые одностенными углеродными нанотрубками.

Некоторые производители уже готовы сыграть на опережение, заявляя о применении наноуглерода. Это вовсе не означает, что другие производители уже не используют наноуглерод, хотя и не говорят об этом... С начала года производитель велосипедных шин Vittoria продает шины с добавлением графена, базового материала для нанотрубок TUBALL (вернитесь в начало статьи, если уже забыли!). Компания Vittoria использует его в виде слоев, вкрапливаемых в покрышку, и утверждает, что уже нашла доселе недостижимый компромисс: одновременное улучшение сопротивления качению, а также достижение устойчивости шины к проколам, столь важной для велосипедистов характеристики. «Улучшить все сразу», – вот уже и конкуренция подтверждает слова Жана-Николя Эльта...

Вторая новость пришла из Китая, где в августе было заключено соглашение между компаниями Sentury Tire и Huago по условиям производства шин с добавлением графена. Мы еще не знаем как, но в любом случае, технология будет точно отличаться от шин Vittoria. Такие новости указывают на общий прогресс: сопротивление качению и километраж, умноженные на 1,5. И вот же два представителя компании показали своего графенового «первенца» на крупном совещании специалистов по углероду «GrapChina» 22 сентября. В тоже время и на том же совещании производитель Shangdong официально объявил, что теперь он будет производить шины с добавлением графена. И все те, кто используют его, ссылаются на то, что он был изобретен нобелевскими лауреатами. Это – аргумент в споре, на который не может притязать TUBALL, даже если нанотрубки и были изобретены до графена!

Бьемся об заклад, что количество новостей такого рода будет расти очень быстро. 2016 год знаменует собой отправную точку углерода в шинной промышленности. И этот сдвиг только начался, а OCSiAl со своими нанотрубками в авангарде этой трансформации. И это процесс достойный нашего внимания... На многие годы вперед...

Жан-Пьер Госслен

Введение:

Нанотрубки могут выступать не только в роли исследуемого материала, но и как инструмент исследования. На основе нанотрубки можно, к примеру, создать микроскопические весы. Берем нанотрубку, определяем (спектроскопическими методами) частоту ее собственных колебаний, затем прикрепляем к ней исследуемый образец и определяем частоту колебаний нагруженной нанотрубки. Эта частота будет меньше частоты колебаний свободной нанотрубки: ведь масса системы увеличилась, а жесткость осталась прежней (вспомните формулу для частоты колебаний груза на пружинке). Например, в работе было обнаружено, что груз уменьшает частоту колебаний с 3.28 МГц до 968 кГц, откуда была получена масса груза 22 +- 8 фг (фемтограмм, т.е. 10-15 грамм!)

Другой пример, когда нанотрубка является частью физического прибора - это "насаживание" ее на острие сканирующего туннельного или атомного силового микроскопа. Обычно такое острие представляет собой остро заточенную вольфрамовую иглу, но по атомным меркам такая заточка все равно достаточно грубая. Нанотрубка же представляет собой идеальную иглу диаметром порядка нескольких атомов. Прикладывая определенное напряжение, можно подхватывать атомы и целые молекулы, находящиеся на подложке непосредственно под иглой, и переносить их с места на место.

Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. Уже сейчас созданы опытные образцы полевых транзисторов на основе одной нанотрубки: прикладывая запирающее напряжение нескольких вольт, ученые научились изменять проводимость однослойных нанотрубок на 5 порядков!

Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона!

Углеродные нанотрубки (тубулены ) - это протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей и заканчивающиеся обычно полусферической головкой, которая может рассматриваться как половина молекулы фуллерена

Структура нанотрубок:

Для получения нанотрубки (n, m), графитовую плоскость надо разрезать по направлениям пунктирных линий и свернуть вдоль направления вектора R .

Идеальная нанотрубка представляет собой свёрнутую в цилиндр графитовую плоскость, то есть поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода. Результат такой операции зависит от угла ориентации графитовой плоскости относительно оси нанотрубки. Угол ориентации, в свою очередь, задаёт хиральность нанотрубки, которая определяет, в частности, её электрические характеристики

Хиральность нанотрубок обозначается набором символов (m, n), указывающих координаты шестиугольника, который в результате сворачивания плоскости должен совпадать с шестиугольником, находящимся в начале координат.

Другой способ обозначения хиральности состоит в указании угла α между направлением сворачивания нанотрубки и направлением, в котором соседние шестиугольники имеют общую сторону. Однако в этом случае для полного описания геометрии нанотрубки необходимо указать её диаметр. Индексы хиральности однослойной нанотрубки (m, n) однозначным образом определяют её диаметр D. Указанная связь имеет следующий вид:

где d 0 = 0,142 нм - расстояние между соседними атомами углерода в графитовой плоскости. Связь между индексами хиральности (m, n) и углом α даётся соотношением:

Среди различных возможных направлений сворачивания нанотрубок выделяются те, для которых совмещение шестиугольника (m, n) с началом координат не требует искажения его структуры. Этим направлениям соответствуют, в частности, углы α = 0 (armchair конфигурация) и α = 30° (zigzag конфигурация). Указанные конфигурации отвечают хиральностям (m, 0) и (2n, n) соответственно.

(типы нанотрубок)

Одностенные нанотрубки:

Структура одностенных (single-walled) нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы.

Особое место среди одностенных нанотрубок занимают так называемые armchair-нанотрубки или нанотрубки с хиральностью (10, 10). В нанотрубках такого типа две из С-С-связей, входящих в состав каждого шестичленного кольца, ориентированы параллельно продольной оси трубки. Нанотрубки с подобной структурой должны обладать чисто металлической структурой.

Многостенные нанотрубки:

Многостенные (multi-walled) нанотрубки отличаются от одностенных значительно более широким разнообразием форм и конфигураций. Разнообразие структур проявляется как в продольном, так и в поперечном направлении.

Структура типа «русской матрёшки» (russian dolls) (рис. а) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры (рис. б) представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур (рис. в) напоминает свиток (scroll). Для всех структур на рис. характерно значение расстояния между соседними графитовыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита.

Реализация той или иной структуры многостенных нанотрубок в конкретной экспериментальной ситуации зависит от условий синтеза. Анализ имеющихся экспериментальных данных указывает, что наиболее типичной структурой многостенных нанотрубок является структура с попеременно расположенными по длине участками типа «русской матрёшки» и «папье-маше». При этом «трубки» меньшего размера последовательно вложены в трубки большего размера. В пользу такой модели говорят, например, факты по интеркалированию калия или хлорида железа в «межтрубочное» пространство и образование структур типа «бусы».

История открытия:

Как известно, фуллерен (C 60) был открыт группой Смолли, Крото и Кёрла в 1985 г., за что в 1996 г. эти исследователи были удостоены Нобелевской премии по химии. Что касается углеродных нанотрубок, то здесь нельзя назвать точную дату их открытия. Хотя общеизвестным является факт наблюдения структуры многостенных нанотрубок Ииджимой в 1991 г. , существуют более ранние свидетельства открытия углеродных нанотрубок. Так, например в 1974-1975 гг. Эндо и др. опубликовали ряд работ с описанием тонких трубок с диаметром менее 100 Å, приготовленных методом конденсации из паров, однако более детального исследования структуры не было проведено. Группа ученых Института катализа СО АН СССР в 1977 году при изучении зауглероживания железохромовых катализаторов дегидрирования под микроскопом зарегистрировали образование "пустотелых углеродных дендритов", при этом был предложен механизм образования и описано строение стенок. В 1992 в Nature была опубликована статья, в которой утверждалось, что нанотрубки наблюдали в 1953 г. Годом ранее, в 1952, в статье советских учёных Радушкевича и Лукьяновича сообщалось об электронно-микроскопическом наблюдении волокон с диаметром порядка 100 нм, полученных при термическом разложении окиси углерода на железном катализаторе. Эти исследования также не были продолжены.



Вверх