Что называется механической волной. Механические волны: источник, свойства, формулы

Механическая волна в физике - это явление распространения возмущений, сопровождающееся передачей энергии колеблющегося тела от одной точки к другой без транспортировки вещества, в некоторой упругой среде.

Среда, в которой между молекулами существует упругое взаимодействие (жидкость, газ или твёрдое вещество) - обязательное условие для возникновения механических возмущений. Они возможны только тогда, когда молекулы вещества сталкиваются друг с другом, передавая энергию. Одним из примеров таких возмущений является звук (акустическая волна). Звук может распространяться в воздухе, в воде или в твёрдом теле, но не в вакууме.

Для создания механической волны необходима некоторая начальная энергия, которая выведет среду из положения равновесия. Эта энергия затем и будет передаваться волной. Например, камень, брошенный в небольшое количество воды, создаёт волну на поверхности. Громкий крик создаёт акустическую волну.

Основные виды механических волн:

  • Звуковые;
  • На поверхности воды;
  • Землетрясения;
  • Сейсмические волны.

Механические волны имеют пики и впадины как все колебательные движения. Их основными характеристиками служат:

  • Частота. Это количество колебаний, совершающихся за секунду. Единицы измерения в СИ: [ν] = [Гц] = [с -1 ].
  • Длина волны. Расстояние между соседними пиками или впадинами. [λ] = [м].
  • Амплитуда. Наибольшее отклонение точки среды от положения равновесия. [Х max ] = [м].
  • Скорость. Это расстояние, которое преодолевает волна за секунду. [V] = [м/с].

Длина волны

Длиной волны называют расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах.

Волны распространяются в пространстве. Направление их распространения называют лучом и обозначают линией, перпендикулярной волновой поверхности. А их скорость вычисляют по формуле:

Граница волновой поверхности, отделяющая часть среды, в которой уже происходят колебания, от части среды, в которой колебания ещё не начались, - волновой фронт .

Продольные и поперечные волны

Одним из способов классификации механического типа волн является определение направления движения отдельных частиц среды в волне по отношению к направлению её распространения.

В зависимости от направления движения частиц в волнах, выделяют:

  1. Поперечные волны. Частицы среды в таком типе волн колеблются под прямым углом к волновому лучу. Рябь на пруду или вибрирующие струны гитары помогут представить поперечные волны. Такой тип колебания не может распространяться в жидкости или газовой среде, потому что частицы этих сред движутся хаотично и невозможно организовать их движение перпендикулярно направлению распространения волны. Поперечный тип волн движется намного медленнее, чем продольный.
  2. Продольные волны. Частицы среды колеблются в том же направлении, в котором распространяется волна. Некоторые волны такого типа называют компрессионными или волнами сжатия. Продольные колебания пружины - периодичные сжатия и растяжения - представляют хорошую визуализацию таких волн. Продольные волны являются самыми быстрыми волнами механического типа. Звуковые волны в воздухе, цунами и ультразвук - продольные. К ним можно отнести и определённый тип сейсмических волн, распространяющихся под землёй и в воде.

Когда в каком-нибудь месте твердой, жидкой или газообразной среды происходит возбуждение колебаний частиц, результатом взаимодействия атомов и молекул среды становится передача колебаний от одной точки к другой с конечной скоростью.

Определение 1

Волна – это процесс распространения колебаний в среде.

Различают следующие виды механических волн:

Определение 2

Поперечная волна : частицы среды смещаются в направлении, перпендикулярном направлению распространения механической волны.

Пример: волны, распространяющиеся по струне или резиновому жгуту в натяжении (рисунок 2 . 6 . 1);

Определение 3

Продольная волна : частицы среды смещаются в направлении распространения механической волны.

Пример: волны, распространяющиеся в газе или упругом стержне (рисунок 2 . 6 . 2).

Интересно, что волны на поверхности жидкости включают в себя и поперечную, и продольную компоненты.

Замечание 1

Укажем важное уточнение: когда механические волны распространяются, они переносят энергию, форму, но не переносят массу, т.е. в обоих видах волн переноса вещества в направлении распространения волны не происходит. Распространяясь, частицы среды совершают колебания около положений равновесия. При этом, как мы уже сказали, волны переносят энергию, а именно энергию колебаний от одной точки среды к другой.

Рисунок 2 . 6 . 1 . Распространение поперечной волны по резиновому жгуту в натяжении.

Рисунок 2 . 6 . 2 . Распространение продольной волны по упругому стержню.

Характерная черта механических волн – их распространение в материальных средах в отличие, например, от световых волн, способных распространяться и в пустоте. Для возникновения механического волнового импульса необходима среда, имеющая возможность запасать кинетическую и потенциальную энергии: т.е. среда должна иметь инертные и упругие свойства. В реальных средах эти свойства получают распределение по всему объему. К примеру, каждому небольшому элементу твердого тела присуща масса и упругость. Самая простая одномерная модель такого тела представляет из себя совокупность шариков и пружинок (рисунок 2 . 6 . 3).

Рисунок 2 . 6 . 3 . Простейшая одномерная модель твердого тела.

В этой модели инертные и упругие свойства разделены. Шарики имеют массу m , а пружинки – жесткость k . Такая простая модель дает возможность описать распространение продольных и поперечных механических волн в твердом теле. При распространении продольной волны шарики смещаются вдоль цепочки, а пружинки растягиваются или сжимаются, что есть деформация растяжения или сжатия. Если подобная деформация происходит в жидкой или газообразной среде, ее сопровождает уплотнение или разрежение.

Замечание 2

Отличительная особенность продольных волн заключается в том, что они способны распространяться в любых средах: твердых, жидких и газообразных.

Если в указанной модели твердого тела один или несколько шариков получают смещение перпендикулярно всей цепочке, можно говорить о возникновении деформации сдвига. Пружины, получившие деформацию в результате смещения, будут стремиться вернуть смещенные частицы в положение равновесия, а на ближайшие несмещенные частицы начнет оказываться влияние упругих сил, стремящихся отклонить эти частицы от положения равновесия. Итогом станет возникновение поперечной волны в направлении вдоль цепочки.

В жидкой или газообразной среде упругая деформация сдвига не возникает. Смещение одного слоя жидкости или газа на некоторое расстояние относительно соседнего слоя не приведет к появлению касательных сил на границе между слоями. Силы, которые оказывают воздействие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. Аналогично можно сказать и о газообразной среде.

Замечание 3

Таким образом, появление поперечных волн невозможно в жидкой или газообразной средах.

В плане практического применения особый интерес представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ . Синусоидальные волны получают распространение в однородных средах с некоторой постоянной скоростью υ .

Запишем выражение, показывающее зависимость смещения y (x , t) частиц среды из положения равновесия в синусоидальной волне от координаты x на оси O X , вдоль которой распространяется волна, и от времени t:

y (x , t) = A cos ω t - x υ = A cos ω t - k x .

В приведенном выражении k = ω υ – так называемое волновое число, а ω = 2 π f является круговой частотой.

Рисунок 2 . 6 . 4 демонстрирует «моментальные фотографии» поперечной волны в момент времени t и t + Δ t . За промежуток времени Δ t волна перемещается вдоль оси O X на расстояние υ Δ t . Подобные волны носят название бегущих волн.

Рисунок 2 . 6 . 4 . «Моментальные фотографии» бегущей синусоидальной волны в момент времени t и t + Δ t .

Определение 4

Длина волны λ – это расстояние между двумя соседними точками на оси O X , испытывающими колебание в одинаковых фазах.

Расстояние, величина которого есть длина волны λ , волна проходит за период Т. Таким образом, формула длины волны имеет вид: λ = υ T , где υ является скоростью распространения волны.

С течением времени t происходит изменение координаты x любой точки на графике, отображающем волновой процесс (к примеру, точка А на рисунке 2 . 6 . 4), при этом значение выражения ω t – k x остается неизменным. Спустя время Δ t точка А переместится по оси O X на некоторое расстояние Δ x = υ Δ t . Таким образом:

ω t - k x = ω (t + ∆ t) - k (x + ∆ x) = c o n s t или ω ∆ t = k ∆ x .

Из указанного выражения следует:

υ = ∆ x ∆ t = ω k или k = 2 π λ = ω υ .

Становится очевидно, что бегущая синусоидальная волна имеет двойную периодичность – во времени и пространстве. Временной период является равным периоду колебаний T частиц среды, а пространственный период равен длине волны λ .

Определение 5

Волновое число k = 2 π λ – это пространственный аналог круговой частоты ω = - 2 π T .

Сделаем акцент на том, что уравнение y (x , t) = A cos ω t + k x является описанием синусоидальной волны, получающей распространение в направлении, противоположном направлению оси O X , со скоростью υ = - ω k .

Когда бегущая волна получает распространение, все частицы среды гармонически колеблются с некоторой частотой ω . Это означает, что как и при простом колебательном процессе, средняя потенциальная энергия, являющаяся запасом некоторого объема среды, есть средняя кинетическая энергия в том же объеме, пропорциональная квадрату амплитуды колебаний.

Замечание 4

Из вышесказанного можно сделать вывод, что, когда бегущая волна получает распространение, появляетсяпоток энергии, пропорциональный скорости волны и квадрату ее амплитуды.

Бегущие волны движутся в среде с определенными скоростями, находящимися в зависимости от типа волны, инертных и упругих свойств среды.

Скорость, с которой поперечные волны распространяются в натянутой струне или резиновом жгуте, имеет зависимость от погонной массы μ (или массы единицы длины) и силы натяжения T :

Скорость, с которой продольные волны распространяются в безграничной среде, рассчитывается при участии таких величин как плотность среды ρ (или масса единицы объема) и модульвсестороннего сжатия B (равен коэффициенту пропорциональности между изменением давления Δ p и относительным изменением объема Δ V V , взятому с обратным знаком):

∆ p = - B ∆ V V .

Таким образом, скорость распространения продольных волн в безграничной среде, определяется по формуле:

Пример 1

При температуре 20 ° С скорость распространения продольных волн в воде υ ≈ 1480 м / с, в различных сортах стали υ ≈ 5 – 6 к м / с.

Если речь идет о продольных волнах, получающих распространение в упругих стержнях, запись формулы для скорости волны содержит не модуль всестороннего сжатия, а модуль Юнга:

Для стали отличие E от B незначительно, а вот для прочих материалов оно может составлять 20 – 30 % и больше.

Рисунок 2 . 6 . 5 . Модель продольных и поперечных волн.

Предположим, что механическая волна, получившая распространение в некоторой среде, встретила на пути некое препятствие: в этом случае характер ее поведения резко изменится. К примеру, на границе раздела двух сред с различающимися механическими свойствами волна частично отразится, а частично проникнет во вторую среду. Волна, пробегающая по резиновому жгуту или струне, отразится от зафиксированного конца, и возникнет встречная волна. Если у струны зафиксированы оба конца, появятся сложные колебания, являющиеся итогом наложения (суперпозиции) двух волн, получающих распространение в противоположных направлениях и испытывающих отражения и переотражения на концах. Так «работают» струны всех струнных музыкальных инструментов, зафиксированные с обоих концов. Схожий процесс возникает при звучании духовых инструментов, в частности, органных труб.

Если волны, распространяющиеся по струне во встречных направлениях, обладают синусоидальной формой, то при определенных условиях они образуют стоячую волну.

Допустим, струна длины l зафиксирована таким образом, что один из ее концов расположен в точке x = 0 , а другой – в точке x 1 = L (рисунок 2 . 6 . 6). В струне имеется натяжение T .

Рисунок 2 . 6 . 6 . Возникновение стоячей волны в струне, зафиксированной на обоих концах.

По струне одновременно пробегают в противоположных направлениях две волны с одинаковой частотой:

  • y 1 (x , t) = A cos (ω t + k x) – волна, распространяющаяся справа налево;
  • y 2 (x , t) = A cos (ω t - k x) – волна, распространяющаяся слева направо.

Точка x = 0 - один из зафиксированных концов струны: в этой точке падающая волна y 1 в результате отражения создает волну y 2 . Отражаясь от зафиксированного конца, отраженная волна входит в противофазу с падающей. В соответствии с принципом суперпозиции (что есть экспериментальный факт) колебания, созданные встречными волнами во всех точках струны, суммируются. Из сказанного следует, что итоговое колебание в каждой точке определяется как сумма колебаний, вызванных волнами y 1 и y 2 в отдельности. Таким образом:

y = y 1 (x , t) + y 2 (x , t) = (- 2 A sin ω t) sin k x .

Приведенное выражение является описанием стоячей волны. Введем некоторые понятия, применимые к такому явлению как стоячая волна.

Определение 6

Узлы – точки неподвижности в стоячей волне.

Пучности – точки, расположенные между узлами и колеблющиеся с максимальной амплитудой.

Если следовать данным определениям, для возникновения стоячей волны оба зафиксированных конца струны должны являться узлами. Указанная ранее формула отвечает этому условию на левом конце (x = 0) . Чтобы условие было выполнено и на правом конце (x = L) , необходимо чтобы k L = n π , где n является любым целым числом. Из сказанного можно сделать вывод, что стоячая волна в струне появляется не всегда, а только тогда, когда длина L струны равна целому числу длин полуволн:

l = n λ n 2 или λ n = 2 l n (n = 1 , 2 , 3 , . . .) .

Набору значений λ n длин волн соответствует набор возможных частот f

f n = υ λ n = n υ 2 l = n f 1 .

В этой записи υ = T μ есть скорость, с которой распространяются поперечные волны по струне.

Определение 7

Каждая из частот f n и связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота f 1 носит название основной частоты, все прочие (f 2 , f 3 , …) называются гармониками.

Рисунок 2 . 6 . 6 иллюстрирует нормальную моду для n = 2 .

Стоячая волна не обладает потоком энергии. Энергия колебаний, «запертая» в отрезке струны между двумя соседними узлами, не переносится в остальные части струны. В каждом таком отрезке происходит периодическое (дважды за период T ) преобразование кинетической энергии в потенциальную и обратно, подобно обычной колебательной системе. Однако, здесь имеется различие: если груз на пружине или маятник имеют единственную собственную частоту f 0 = ω 0 2 π , то струна характеризуется наличием бесконечного числа собственных (резонансных) частот f n . На рисунке 2 . 6 . 7 показано несколько вариантов стоячих волн в струне, зафиксированной на обоих концах.

Рисунок 2 . 6 . 7 . Первые пять нормальных мод колебаний струны, зафиксированной на обоих концах.

Согласно принципу суперпозиции стоячие волны различных видов (с разными значениями n ) способны одновременно присутствовать в колебаниях струны.

Рисунок 2 . 6 . 8 . Модель нормальных мод струны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

ОПРЕДЕЛЕНИЕ

Продольная волна – это волна, при распространении которой смещение частиц среды происходит в направлении распространения волны (рис.1, а).

Причиной возникновения продольной волны является сжатия/растяжения, т.е. сопротивление среды изменению ее объема. В жидкостях или газах такая деформация сопровождается разрежением или уплотнением частиц среды. Продольные волны могут распространяться в любых средах – твердых, жидких и газообразных.

Примерами продольных волн являются волны в упругом стержне или звуковые волны в газах.

Поперечные волны

ОПРЕДЕЛЕНИЕ

Поперечная волна – это волна, при распространении которой смещение частиц среды происходит в направлении, перпендикулярном распространению волны (рис.1,б).

Причиной поперечной волны является деформация сдвига одного слоя среды относительно другого. При распространении поперечной волны в среде образуются гребни и впадины. Жидкости и газы, в отличие от твердых тел, не обладают упругостью по отношению к сдвигу слоев, т.е. не оказывают сопротивления изменению формы. Поэтому поперечные волны могут распространяться только в твердых телах.

Примерами поперечных волн могут служить волны, бегущие по натянутой веревке или по струне.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды поплавок, то можно увидеть, что он движется, покачиваясь на волнах, по круговой . Таким образом, волна на поверхности жидкости имеет как поперечную, так и продольную компоненты. На поверхности жидкости также могут возникать волны особого типа – так называемые поверхностные волны . Они возникают в результате действия и силы поверхностного натяжения.

Примеры решения задач

ПРИМЕР 1

Задание Определить направление распространения поперечной волны, если поплавок в некоторый момент времени имеет направление скорости, указанное на рисунке.

Решение Сделаем рисунок.

Начертим поверхность волны вблизи поплавка через некоторый промежуток времени , учитывая, что за это время поплавок опустился вниз, так как его в момент времени была направлена вниз. Продолжив линию вправо и влево, покажем положение волны в момент времени . Сравнив положение волны в начальный момент времени (сплошная линия) и в момент времени (пунктирная линия), делаем вывод о том, что волна распространяется влево.

Волновой процесс - процесс переноса энергии без переноса вещества.

Механическая волна - возмущение, распространяющееся в упругой среде.

Наличие упругой среды - необходимое условие распространения механических волн.

Перенос энергии и импульса в среде происходит в результате взаимодействия между соседними частицами среды.

Волны бывают продольные и поперечные.

Продольная механическая волна - волна, в которой движение частиц среды происходит в направлении распространения волны. Поперечная механическая волна - волна, в которой частицы среды перемещаются перпендикулярно направлению распространения волны.

Продольные волны могут распространяться в любой среде. Поперечные волны в газах и жидкостях не возникают, так как в них

отсутствуют фиксированные положения частиц.

Периодическое внешнее воздействие вызывает периодические волны.

Гармоническая волна - волна, порождаемая гармоническими колебаниями частиц среды.

Длина волны - расстояние, на которое распространяется волна за период колебаний ее источника:

Скорость механической волны - скорость распространения возмущения в среде. Поляризация - упорядоченность направлений колебаний частиц в среде.

Плоскость поляризации - плоскость, в которой колеблются частицы среды в волне. Линейно-поляризованная механическая волна - волна, частицы которой колеблются вдоль определенного направления (линии).

Поляризатор - устройство, выделяющее волну определенной поляризации.

Стоячая волна - волна, образующаяся в результате наложения двух гармонических волн, распространяющихся навстречу друг другу и имеющих одинаковый период, амплитуду и поляризацию.

Пучности стоячей волны - положение точек, имеющих максимальную амплитуду колебаний.

Узлы стоячей волны - неперемещающиеся точки волны, амплитуда колебаний которых равна нулю.

На длине l струны, закрепленной на концах, укладывается целое число п полуволн поперечных стоячих волн:


Такие волны называются модами колебаний.

Мода колебаний для произвольного целого числа n > 1 называется n-й гармоникой или n-м обертоном. Мода колебаний для n = 1 называется первой гармоникой или основной модой колебаний. Звуковые волны - упругие волны в среде, вызывающие у человека слуховые ощущения.

Частота колебаний, соответствующих звуковых волнам, лежит в пределах от 16 Гц до 20 кГц.

Скорость распространения звуковых волн определяется скоростью передачи взаимодействия между частицами. Скорость звука в твердом теле v п, как правило, больше скорости звука в жидкости v ж, которая, в свою очередь, превышает скорость звука в газе v г.


Звуковые сигналы классифицируют по высоте, тембру и громкости. Высота звука определяется частотой источника звуковых колебаний. Чем больше частота колебаний, тем выше звук; колебаниям малых частот соответствуют низкие звуки. Тембр звука определяется формой звуковых колебаний. Различие формы колебаний, имеющих одинаковый период, связано с разными относительными амплитудами основной моды и обертоном. Громкость звука характеризуется уровнем интенсивности звука. Интенсивность звука - энергия звуковых волн, падающая на площадь 1 м 2 за 1 с.



Вверх