Атомную отрасль России ждёт «Прорыв

«Росатом» поставил себе задачу создать конкурентоспособный коммерческий быстрый реактор к 2030 году. Идеями о том, как этого достичь, поделились участники третьей ежегодной конференции «Прорыв» в Екатеринбурге.

«Борьба за место в мировой энергетической системе резко обострилась,- сразу подчеркнул актуальность задачи заместитель гендиректора «Росатома», глава блока по управлению
инновациями Вячеслав Першуков.- Поэтому основной критерий проекта - не реализуемость, а конкурентоспособность».

Что касается конкурентоспособности видов генерации, то атомная энергетика сегодня имеет явное преимущество по стоимости электроэнергии. Однако темпы роста возобновляемых источников заставляют задуматься. «Солнечная и ветровая генерация в обозримом будущем могут стать основными конкурентами атомной энергетики. Все будет зависеть от конкретной страны, ее географического положения и финансово-экономического благополучия»,- рассуждает Вячеслав Першуков.

ЦЕЛЕВАЯ LCOE МЕГАВАТТ-ЧАСА ДЛЯ ПЭК С РЕАКТОРАМИ НА БЫСТРЫХ НЕЙТРОНАХ И ЗЯТЦ

Но конкуренция намечается и внутри атомной генерации: реакторы на быстрых нейтронах и реакторы на тепловых. Поэтому среди задач проекта «Прорыв» не только создание технологии и демонстрация замыкания топливного цикла на промышленной основе (впервые в мире), но и экономика. «К 2030 году мы должны создать прототип коммерческого реактора на быстрых нейтронах. За вполне конкретные деньги»,- обрисовал задачу Вячеслав Першуков. Он добавил, что в мире началась гонка ядерных реакторов четвертого поколения, основные ее участники - Россия, Франция, США, Япония, Корея, Китай, Индия: «Все занимаются и реакторами на тепловых нейтронах поколения III+, и у каждой из этих стран в разной степени завершенности работы по тематике быстрых реакторов». Пока Россия в этой гонке занимает лидирующее положение. Однако, если разработка новых продуктов затянется, можно потерять и лидерство, и рынок, а также инвестиции.

В поисках экономии

Предварительные соображения, как оптимизировать стоимость «Прорыва», уже есть. Во-первых, сроки. «Росатом» в рамках программы инновационного развития намерен сократить срок реализации проектов от идеи до разработки для обычных технологий до пяти, максимум 10 лет, для ядерных - до 10, максимум 20 лет. В мировой практике разработка инновационного продукта занимает около пяти лет при непрерывных инвестициях в НИОКР, подчеркнул Вячеслав Першуков. «Раньше для создания нового топлива требовалось порядка 30 лет. В проекте «Прорыв» мы разрабатываем новое плотное топливо за семь-восемь лет»,- отметил он. По его мнению, это возможно благодаря переходу на проектное управление.

Кстати, судя по всему, наконец-то будет поставлена точка в многолетнем споре, что лучше - натриевый теплоноситель или свинцовый. Ответ в нынешних реалиях очевиден: лучше то, что дешевле.

Другие направления экономии - снижение потребления электроэнергии на собственные нужды, уменьшение капвложений. Приведенная стоимость производства электроэнергии (LCOE) должна быть ниже 38 долларов за мегаватт-час. «Я думаю, мы еще найдем механизм снижения стоимости капитальных вложений, что позволит вписаться в условия конкурентоспособности»,- сказал Вячеслав Першуков.

К слову, быстрые реакторы с замкнутым топливным циклом априори имеют преимущество в экономике перед тепловыми - благодаря использованию плутония. «Мы сравнивали затраты на строительство АЭС с тепловыми реакторами и открытым топливным циклом и на АЭС с быстрыми реакторами и замкнутым топливным циклом. Вовлекаем в топливный цикл плутоний - цена за киловатт-час снижается более чем на 10% как в рублях, так и в долларах»,- рассказал Вячеслав Першуков.

Еще один инструмент - ПСР. Только за год благодаря Производственной системе «Росатом» стоимость проекта удалось сократить на 5 млрд рублей. Как помогут снизить стоимость технологические улучшения, показал на примере научный руководитель «Прорыва» Евгений Адамов: «Мы пришли к тому, что на первом этапе целесообразно пользоваться комбинированной технологией переработки ОЯТ. Пирохимическая технология должна максимально снять радиоактивность, а после этого привычная нам гидрометаллургия доочищает до такого уровня, что на фабрикации топлива мы будем иметь дело с чистыми компонентами. На промышленной стадии, скорее всего, экономически недопустимо будет использовать две в затылок поставленные технологии. Мы рассчитываем остановиться на одной, надеемся, что это будет пиротехнология».

ВЯЧЕСЛАВ ПЕРШУКОВ:
«МЫ СРАВНИВАЛИ
ЗАТРАТЫ НА СТРОИ-
ТЕЛЬСТВО АЭС С ТЕП-
ЛОВЫМИ РЕАКТОРАМИ
И ОТКРЫТЫМ ТОПЛИВ-
НЫМ ЦИКЛОМ И НА АЭС
С БЫСТРЫМИ РЕАКТО-
РАМИ И ЗАМКНУТЫМ
ТОПЛИВНЫМ ЦИКЛОМ.
ВОВЛЕКАЕМ В ТОПЛИВ-
НЫЙ ЦИКЛ ПЛУТОНИЙ -
ЦЕНА ЗА КИЛОВАТТ-ЧАС
СНИЖАЕТСЯ БОЛЕЕ ЧЕМ
НА 10% КАК В РУБЛЯХ,
ТАК И В ДОЛЛАРАХ»

Текущий статус

С точки зрения содержания конференция была не совсем традиционной, так как рассматривались не технические аспекты, а экономика проекта и его место в энергосистеме будущего. Но вопросы о ходе работ не остались без внимания. Вячеслав Першуков доложил, что 80% НИОКР завершены и сейчас стоит вопрос о технологическом освоении их результатов. Готовы проекты реакторной установки, тестируется топ ливо. Испытывают 15 сборок со СНУП-топливом, 11 поставлено в БН-600, четыре извлечены - все сохранили герметичность. Послереакторные исследования показали, что выгорание составило примерно 5,5% т. а. - уровень, достигаемый в тепловых реакторах. Однако участники проекта считают, что у быстрых реакторов этот показатель должен составлять 12% т. а., и намерены продолжить работу, сообщил Евгений Адамов.

Сооружается первая очередь ОДЭК - модуль фабрикации, реактор МБИР в Димитровграде - исследовательская база для отработки реакторной технологии. «Технология начнет отрабатываться в 2020 году. К этому времени необходимо сформировать научную программу для ОДЭК и программу коммерциализации результатов»,- подчеркнул Вячеслав Першуков.

В свою очередь, Евгений Адамов проинформировал, что ведутся работы по активной зоне: «Это ряд гидравлических, коррозионных испытаний. Все беспокоятся о коррозионной стойкости металла в свинце - такие испытания проведены на несколько десятков тысяч часов: 60 тыс. часов для свинца-висмута, 16 тыс.- для свинца. И при соблюдении требований к содержанию кислорода в тяжелом теплоносителе мы имеем достаточно хорошую работоспособность конструкционных материалов». Макет топливной сборки для БРЕСТ-300 изготовлен на НЗХК. По прогнозам Евгения Адамова, в середине
2018 года должно начаться производство топлива для первой загрузки.

Ведутся работы по парогенератору - на расчетном уровне и на экспериментальных стендах, и по главному циркуляционному насосу. «Разработчик, ЦКБМ, сталкивается с тяжелыми условиями, поскольку эта среда в 10 раз плотнее воды, а надо в секунду перекачать 12 т теплоносителя»,- замечает Евгений Адамов. В целом, заключил он, работы ведутся, параметры подтверждаются, однако по полномасштабному стенду работы пока еще не начаты.

Далее

Проект Прорыв – один из главных современных мировых проектов в ядерной энергетике, реализуемый в России ведущими отраслевыми учеными и специалистами, в рамках которого предусматривается создание ядерных энергетических технологий нового поколения на базе замкнутого ядерного топливного цикла с использованием реакторов на быстрых нейтронах.

Проект «Прорыв» осуществляется в рамках федеральной целевой программы «Ядерные энерготехнологии нового поколения на период 2010 - 2015 годов и на перспективу до 2020 года». На сегодняшний день в девяти центрах ответственности проекта трудятся специалисты ведущих научных, проектных и производственных организаций Росатома.

Генеральный директор Государственной корпорации по атомной энергии «Росатом» Сергей Владиленович Кириенко:

«В сегодняшних условиях мы должны быстрее, чем планировалось, представить на рынке новое поколение конкурентоспособных технологий. Цель проекта «Прорыв» - это не только уникальный результат научно-исследовательских или опытно-конструкторских работ, но и создание конкурентоспособной технологии, с помощью которой атомная отрасль России сможет не только сохранить, но и усилить свое лидерство на мировом рынке в ближайшие 30 лет».

В ближайшие пять лет на площадке Сибирского химического комбината планируется возвести опытно-демонстрационный энергетический комплекс в составе энергоблока с реактором БРЕСТ-ОД-300 со свинцовым теплоносителем и замыкающего ядерный топливный цикл пристанционного завода, который включает в себя модуль переработки облученного смешанного уран-плутониевого (нитридного) топлива и модуль фабрикации/рефабрикации для изготовления стартовых твэлов из привозных материалов, а впоследствии твэлов из переработанного облученного ядерного топлива.

Система управления проектом «Прорыв» в 2014 году победила во Всероссийском конкурсе «Проектный Олимп», проводимом Аналитическим центром при Правительстве Российской Федерации, в номинации «Системы управления проектами с совокупным бюджетом более 500 млн руб. в госкорпорациях, институтах развития, государственных компаниях».

Научный руководитель проектного направления «Прорыв» Евгений Олегович Адамов:

«Проект «Прорыв» сегодня выполняется с опережением сроков по отношению к другим проектам ядерной энергетики мирового уровня примерно на 10 лет, более половины НИОКР по проекту завершены. Внедрение результатов проекта поэтапно в диапазоне 2020-2030-х гг. даст старт развитию крупномасштабной ядерной энергетики, создаст предпосылки укрепления России в качестве лидера на мировом рынке ядерных технологий и продуктов».

Многопрофильность проекта, потребовавшая привлечения ряда отраслевых предприятий, университетов и институтов РАН, определила необходимость возвращения к практике проектного управления, некогда успешно использованной при решении задач создания ядерного оружия и ракетных средств его доставки. Вместо формирования новых предприятий, как в эпоху первого атомного проекта, на существующих профильных базовых предприятиях ГК «Росатом» были выделены Центры ответственности (ЦО) по реакторным установкам, разработки технологий смешанного уран-плутониевого топлива, по переработке ОЯТ, обращению с РАО, созданию кодов нового поколения. Данные ЦО объединены в рамках проектного подхода под единым научным и административным руководством. Такой метод управления является для отрасли пилотным, и это еще одна новация, которая в случае успеха будет применяться в дальнейшем.

Подробности Создано 28.11.2012 15:02

Профессор, доктор технических наук Геннадий Хандорин -
об общественных слушаниях, сжигании газа и быстрых реакторах

После недавнего сообщения о том, что руководство Госкорпорации «Росатом» и руководство Томской области приняли решение о размещении атомного реактора нового типа «БРЕСТ-300» на площадке Сибирского химического комбината, некоторые томские СМИ отреагировали критически. Мол, данное решение принято без обсуждения с томской общественностью. В связи с этими выступлениями считаю необходимым сделать некоторые разъяснения.

Прорыв гарантирован

Подробности Создано 28.12.2012 15:01

Самый мощный в Европе центр конверсии урана будет введен в эксплуатацию в 2016 году на СХК

В День работника атомной промышленности для СКХ произошло много знаковых событий. Для начала северских атомщиков лично поздравил глава Госкорпорации «Росатом» Сергей Кириенко.

Атомщики зовут в «Прорыв»

Подробности Создано 04.12.2012 15:01

В конце ноября в Томске состоялся пятый региональный форум-диалог «Атомные производства. Общество. Безопасность». И хотя его название носило характер общий, посвящен он был теме, для Томска в этом году ставшей актуальной - ядерной энергетике (ЯЭ) нового поколения, основанной на реакторах на быстрых нейтронах. В мероприятии приняли участие авторитетные специалисты «Росатома», представители властных структур разного уровня, ректоры томских университетов, руководители предприятий и представители общественности.

Ход реализации проекта «Прорыв» обсудили на СХК

Подробности Создано 17.07.2013 15:00

26 марта 2013 года заместитель генерального директора - директор блока по управлению инновациями Госкорпорации «Росатом» Вячеслав Першуков провел в ОАО «Сибирский химический комбинат» (входит в Топливную компанию Росатома «ТВЭЛ») рабочее совещание по вопросам реализации проекта «Прорыв».

Эксперт: реактор БРЕСТ, создаваемый на СХК, безопаснее существующих

Подробности Создано 17.07.2013 14:59

Новейший опытный реактор БРЕСТ-0Д-300, который планируется к 2020 году построить на площадке Сибирского химического комбината (СХК), будет безопаснее любых эксплуатируемых в настоящее время реакторов, считает глава проекта по созданию БРЕСТа Андрей Николаев.

Росатом планирует реализовать на СХК по созданию новейшего топлива, на котором атомная энергетика будет работать после 2020 года. Предполагается построить опытно-демонстрационный энергокомплекс в составе реакторной установки БРЕСТ-300 с пристанционным ядерным топливным циклом и комплекс по производству плотного уран-плутониевого (нитридного) топлива для реакторов на быстрых нейтронах.

Томские эксперты ранее высказали сомнения в безопасности проекта. Отмечалось, что опытный реактор, безопасность которого не доказана, разместят слишком близко к крупному городу, в качестве теплоносителя будет использован жидкий свинец "с неизвестными свойствами", а нитридное топливо до конца не изучено.

"Ничего абсолютно безопасного не существует. Пять уран-графитовых реакторов, которые у нас работали на площадке - когда их строили в 1950-х годах, мало кто думал о безопасности. А они были очень опасные. Любое отклонение от номинального параметра требовало усилий от оператора, чтобы вернуть реактор в нормальное состояние", - сказал Николаев РИА Новости.

Он подчеркнул, что новый реактор будет самостоятельно заглушаться при отклонении любых параметров. Специалист подчеркнул, что в реакторе на быстрых нейтронах используется топливо с меньшим запасом реактивности, поэтому невозможен разгон на мгновенных нейтронах. "И не происходит ядерного взрыва", - добавил эксперт.

Николаев подчеркнул, что плотное нитридное топливо надежнее оксидного, легче переносит механические дефекты и температурные режимы. Свинец, в отличие от используемого в настоящее время в качестве теплоносителя натрия, пассивен, и с точки зрения химической активности безопаснее натрия.

ТОМСК, 16 июл - РИА Новости, Сергей Леваненков.
РИА Новости ria.ru/atomtec_news/20130716/949985649.html#ixzz2ZGpgARA4

«Прорыв» в развитии атомной энергетики

Подробности Создано 19.11.2013 14:58

Создание ядерных энергетических технологий нового поколения по проекту «Прорыв» принесет региону более 100 млрд рублей инвестиций до 2020 года, дополнительные налоги и новые энергомощности

Томск подтверждает свой статус как город-форум. Не так давно в регионе прошел XV межрегиональный конгресс «Энергосбережение - 2012» с международным участием. Две недели назад губернатор области Сергей Жвачкин договорился, что «Газпром» станет генеральным партнером Инновационного форума Innovus в мае 2013 года, с возможным приездом на него лауреатов Нобелевской премии. А 29-30 ноября в Томске прошел V региональный форум-диалог «Атомные производства, общество, безопасность - 2012», который стал площадкой для обсуждения перспектив развития атомной отрасли, создания ядерных энергетических технологий нового поколения, развития диалога с общественностью по вопросам атомной энергетики. - Участниками регионального форума-диалога стали более 300 человек: представители власти, органов местного самоуправления, экологических и общественных организаций, научно-исследовательских и проектных институтов, промышленных предприятий из Москвы, Санкт-Петербурга, Томска и других городов России.

Вопросы, которые обсуждались на форуме, напрямую затрагивали интересы Томской области: перспективы развития атомных производств и атомградов; проблемы обеспечения ядерной и радиационной безопасности, переработки облученного ядерного топлива, обращения с радиоактивными отходами; перспективы создания ядерных энерготехнологий нового поколения по проекту «Прорыв», разработки реакторов на быстрых нейтронах с замкнутым топливным циклом и другие.

На открытии форума Сергей Барановский, заместитель председателя общественного совета госкорпорации «Росатом», президент Зеленого Креста, председатель Российского экологического конгресса отметил, что подобное мероприятие - это новый формат общения атомщиков, ученых, власти, экологов и населения по самым актуальным вопросам развития атомной энергетики, уникальная возможность развития диалога с общественностью.

- «Росатом» ценит возможность вести диалог как со сторонниками, так и с противниками атомного производства, - отметил Александр Локшин, заместитель генерального директора «Росатома» по операционному управлению. - Атомная энергетика требует к себе предельно уважительного отношения, здесь нужно не просто семь раз отмерить, а 77 раз.

В то же время, подчеркнул Локшин, атомную энергетику необходимо развивать, поскольку углеводородных ресурсов (нефти и газа) человечеству хватит еще максимум на 100-200 лет, а ядерную энергетику можно использовать тысячелетиями. При этом, используя углеводороды, мы фактически сжигаем свою планету, причем темпами гораздо более быстрыми, чем она восстанавливается. Что касается альтернативных источников энергии, они, конечно, свое место займут, но не будут основными. Выходит, что у развития атомной энергетики нет альтернативы. И главная задача при этом - обеспечить безопасное развитие мирного атома.

В свою очередь Владимир Жидких, заместитель губернатор Томской области по внутренней политике, сказал, что форум - не просто источник новых знаний, «но и площадка для поиска новых решений в сфере ядерной энергетики, которые должны быть поддержаны томским сообществом».

Очень важно и ценно, что эксперты мирового уровня на томской площадке расскажут о современном положении атомной энергетики и ответят на вопросы, которые волнуют жителей Томской области, - отметил Владимир Жидких.

Представители «Росатома» подчеркнули, что атомная энергетика должна ответить на три вызова времени: быть абсолютно безопасной, вовлекать в топливный процесс уран-238 и решить проблему с отработанным ядерным топливом. Все ключевые задачи развития атомной энергетики будут решаться в рамках проекта «Прорыв», основная часть которого будет реализовываться в Томской области, на Сибирском химическом комбинате.

Драйверами развития атомной отрасли сегодня являются университеты, - сказал по этому поводу Петр Чубик, ректор ТПУ. - Именно университеты одновременно являются и фабрикой научной мысли, и фабрикой квалифицированных кадров. Томские вузы готовы принять самое активное участие в реализации проекта «Прорыв».

«Росатом» планирует реализовать на площадке СХК в рамках проекта «Прорыв» производство экспериментального, нитридного топлива, на котором атомная энергетика будет работать после 2025 года. Основной частью проекта «Прорыв» станет опытно-демонстрационный энергокомплекс в составе реакторной установки БРЕСТ-300 (быстрый реактор естественной безопасности) с пристанционным ядерным топливным циклом.

Основной смысл работы установки - производство электрической и тепловой энергии. Одновременно будет считываться информация, которая позволит в дальнейшем создавать коммерческие атомные реакторы, конкурентоспособные на мировом рынке. По подсчетам специалистов, установка проработает в Томской области 15-20 лет - производя электроэнергию, которая будет распределена по действующим региональным сетям.

Инвестиции в сам реактор оцениваются в размере 25 млрд рублей, в пристанционный топливный цикл - 17 млрд рублей. При этом госкорпорация намерена ускорить создание демонстрационного комплекса ядерных технологий - чтобы он появился уже к 2020 году, а не в период до 2030 года, как планировалось ранее.

У ядерной энергетики имеется огромный потенциал, позволяющий решать проблемы устойчивого развития экономики нашей страны, но для развития отрасли нужны новые технологии. Эту задачу позволяет решить проект «Прорыв», - сказал журналистам Евгений Адамов, бывший министр России по атомной энергии (1998-2001), председатель технического комитета проекта «Прорыв», научный руководитель ОАО «НИКИЭТ» им. Н.А.Доллежаля. - Решение сконцентрировать реализацию проекта на одной площадке (СХК) - верное, оно позволит создать технологию и отладить ее.

Почему для реализации проекта «Прорыв» по созданию нового типа ядерного топлива и реактора нового поколения была выбрана именно Томская область? Ответ на этот вопрос хотелось бы получить от авторитетного, независимого эксперта федерального уровня. Вот, что сказал на этот счет Владимир Грачев, советник генерального директора, член общественного совета ГК «Росатом»:

Для меня это совершенно очевидно. Первая причина - здесь накоплен огромный научно-образовательный потенциал. В Томске и Томской области количество студентов и количество высококвалифицированных кадров на душу населения - самое высокое по России. А количество студентов, обучающихся по тем специальностям, которые необходимы для развития инновационных методов ядерной энергетики - самое высокое в мире.

Второе - большой кадровый потенциал. На СХК работают опытные специалисты очень высокого уровня. Третье - в Томской области есть уникальное сочетание условий для реализации проекта «Прорыв». Необходимо сделать не просто реактор на быстрых нейтронах - это только механизм, главная цель - создать замкнутый ядерно-топливный цикл. Вот, где будет научно-технический прорыв! Это позволит решить глобальную проблему ядерной энергетики - утилизацию радиоактивных отходов.

В Северске есть опыт и радиотехнический, и реакторный. И именно в Томской области при реализации проекта удастся создать атмосферу научно-технического прорыва. Это самое главное! К сожалению, наша страна на сегодняшний день сильно отстала от многих развитых стран по многим направлениям промышленности. В атомной энергетике мы еще впереди планеты всей, и надо это положение сохранить.

Именно Томская область - идеальный регион для осуществления научно-технического прорыва в сфере ядерной энергетики. В процессе реализации этого проекта могут появиться совершенно новые открытия и изобретения, которые помогут вывести мировую атомную энергетику на новый уровень. Нужно создавать прорывные технологии, и томский регион готов решить эту задачу как никакой другой.

Что получит Томская область

Один из самых главных вопросов на форуме звучал так: что получат Северск и Томская область от проектов «Росатома», которые будут реализованы на площадке СХК? Как сообщил гендиректор СХК Сергей Точилин, объем инвестиций «Росатома» в развитие Северска и СХК до 2020 года составит 100 млрд рублей. Из них 42 млрд рублей - в создание проекта «Прорыв» , остальные 58 млрд рублей - ежегодные текущие инвестиции госкорпорации. Так, только в 2012 году «Росатом» вложил в СХК и Северск более 6 млрд рублей.

В свою очередь Александр Локшин сообщил, что сейчас госкорпорация формирует новую схему уплаты налогов - отчисления будут производиться непосредственно в местах присутствия предприятий. Благодаря этому Северск получит дополнительные налоги от реализации проектов «Росатома».

источник aes.tomsk.ru/publication-4436.html

Россия завершает разработку революционного ядерного реактора четвёртого поколения. Реактор «Брест», также известный как «проект Прорыв», решит такое количество международных проблем, что может получить Нобелевскую премию мира.

20 лет назад от этого проекта отказались из-за высокого риска аварий и больших эксплуатационных затрат.

В 2012 году Госкорпорация «Росатом» объявила о выделении 1,8 млрд рублей на возобновление работ по созданию промышленного реактора на быстрых нейтронах БРЕСТ-300, относящегося к последнему, четвертому поколению и использующего свинцовый теплоноситель. Основу атомной энергетики они смогут составить не ранее 80-х годов XXI века, хотя ряд экспертов сомневается, что такой реактор может быть создан в названные сроки.

1,8 млрд рублей были выделены на научно-исследовательские и опытно-конструкторские работы (НИОКР). Согласно документам корпорации, результаты этих работ должны были готовы к концу 2012 года.

По окончании НИОКР должен был представлен технический проект основных частей реакторной установки (внутрикорпусные устройства, насосы, корпус реактора, перегрузочный комплекс, парогенератор), а также обоснования работоспособности и безопасности принимаемых конструктивных решений с проведением расчетных и экспериментальных исследований.

Вся разработка технического проекта «БРЕСТ-300» должна была завершена в 2014 году. А подготовка рабочей проектной документации и прохождение госэкспертизы были запланированы до конца 2015 года.

И только в 2016 году, как ожидалось, должно начаться строительство первого энергоблока. Мощность реактора, который планировалось построить только к 2020 году, будет невысокой и составит всего 300 МВт. В случае успешности этого проекта будет ставиться вопрос о разработке более мощной реакторной установки БРЕСТ-1200.

В «Росатоме» считают, что внедрение реакторов на быстрых нейтронах в современную энергетику многократно увеличит эффективность использования урана, которая будет в 10 раз выше, чем у тепловых.

В части реакторов на быстрых нейтронах мы пока заметно впереди, поскольку остальные страны пока ничего подобного не делают. Таким образом, мы сейчас не конкуренцию развиваем, а свои конкурентные преимущества в плане технологий, - отмечает директор департамента коммуникаций госкорпорации «Росатом» Сергей Новиков. - Реакторы четвертого поколения начнут доминировать после 80-х годов, когда они вытеснят с рынка предыдущее поколение.

И тогда в 2012 году оптимизм госкорпорации в отношении подобного типа реакторов разделяли не все.

На тот день проект «БРЕСТ-300» был только на словах. Как тогда считали, что специалисты могли бы работать над ним еще на протяжении 100 лет. Тогда даже не было доказательств безопасности данного реактора, - отмечал «Известиям» Юрий Семенков, директор Института ядерных реакторов «НИЦ Курчатовский институт». - Я не думаю, что в данном случае Россия находится на каком-то прорывном пути в технологиях.

Но ученый согласен, что для перехода на замкнутый топливный цикл действительно необходим реактор на быстрых нейтронах. Но какой это должен быть реактор, тогда ещё было неизвестно: «Кроме реакторов с натриевым теплоносителем, другие свою жизнеспособность и уверенность в безопасности не показали» .

В «Росатоме» говорят, что намерены занять 20% мирового рынка строительства АЭС в ближайшие 20 лет. По оценкам МАГАТЭ, общемировая потребность в реакторах мощностью 100–400 МВт до 2040 года составит от 500 до 1 тыс. блоков. В денежном эквиваленте объем рынка оценивается в $300–600 млрд.

Экспериментальные реакторы на быстрых нейтронах впервые появились в 1950-е годы. Первым в мире реактором промышленного назначения на быстрых нейтронах стал российский БН-600, который был запущен на третьем блоке Белоярской АЭС в 1980 году. Он до сих пор остается единственным в мире действующим реактором на быстрых нейтронах. Первые работы над проектом «БРЕСТ» начались в конце 80-х годов прошлого столетия. Однако в начале 1990-х годов как этот, так и большинство мировых проектов по созданию реакторов на быстрых нейтронах, были прекращены из-за высокого риска аварий и больших эксплуатационных затрат.

Россия приблизилась к завершению проекта «Прорыв»

И вот 17 марта 2015 года компания «Атомпроект» представила участникам направления «Прорыв» основные технологические решения модуля по переработке отработавшего ядерного топлива (ОЯТ). По итогам обсуждения можно с уверенностью заключить, суперамбициозный высокотехнологичный проект России стал еще на ступень ближе к завершению.

17 марта компания «Атомпроект» представила участникам направления «Прорыв» внешний вид и основные технологические решения модуля по переработке отработавшего ядерного топлива (ОЯТ). По итогам обсуждения можно с уверенностью заключить, что суперамбициозный ядерный проект России стал еще на ступень ближе к завершению. Совещание проводилось в связи с подготовкой проектной документации на госэкспертизу.

Модуль переработки ОЯТ представляет собой один из трех главных компонентов «замкнутого ядерного топливного цикла». Работа по двум другим также продвигается успешно. В марте прошлого года Росатом приступил к строительству завода уран-плутониевого топлива для реактора на быстрых нейтронах «Брест-300», проектирование самого реактора находится на стадии завершения. Таким образом, Россия неуклонно приближается к грандиозному прорыву в области энергетики.

Реализация проекта «Прорыв» позволит создать первый в мире замкнутый ядерный топливный цикл. Потратив около 130 млрд. рублей страна вплотную приблизится к созданию совершенно новой атомной энергетики четвертого поколения.

Развернутая оценка такого события сделана инвестором Александром Геннадьевичем Крюковым в статье «Россия – лидер высоких технологий в энергетике»» .

В первую очередь проект позволит решить проблему накопившегося ОЯТ, превратив его в топливо для реакторов на быстрых нейтронах. А.Г. Крюков отмечает, что «за шестьдесят лет работы атомной отрасли накоплено огромное количество ОЯТ и ОГФУ, их хранение требует значительных средств, тогда как замкнутый цикл позволит использовать их для получения электроэнергии. Даже грубые подсчеты говорят о том, что при нынешних масштабах выработки электроэнергии Урана-238 в ОЯТ и ОГФУ хватит на несколько сотен лет генерации».

Важно отметить, что в данный момент РФ опередила всех, и Россия – «единственная страна в мире, которая может кардинально изменить ситуацию с производством электроэнергии для себя и поставить на мировой рынок высокотехнологичный продукт, не имеющий аналогов – атомную энергетику 4-го поколения с внутренне присущей безопасностью» – подчеркивает аналитик А.Г. Крюков.

Реализация проекта «Прорыв» связана с решением сложнейших технологических проблем, в этой связи передача на Госэкспертизу документации модуля переработки ОЯТ свидетельствует о том, что трудности удалось преодолеть, и решения найдены.

Ядерный прорыв

Константин Гурдин в статье «Ядерный прорыв» пишет, что ядерные станции дают нашей стране 17% электроэнергии, на Северо-Западе РФ – более 40%. В стране пашут 10 АЭС, 33 энергоблока. Всё это – обычные реакторы так называемого разом­кнутого цикла. Они работают на низкообогащённом уране, сильно не дожигают топливо, в результате копятся горы радиоактивных отходов.

Набралось уже 18 тыс. т отработанного урана, и каждый год добавляется 670 тонн. В мире 345 тыс. т этих проблемных отходов, из них 110 тыс. у США. Промышленные технологии переработки есть только у двух стран: России и Франции.

Проблему может решить только реактор нового типа, действующий по замкнутому циклу. Заодно он поможет справиться с утечками военных ядерных технологий. Замкнутые реакторы можно поставлять любым странам, поскольку на них в принципе нельзя получить сырьё для ядерных зарядов.

Но главное – безопасность. Замкнутый цикл можно запустить на старом, отработанном топливе. «Даже грубые подсчёты говорят, что запасов отработанного урана, накопленных за 60 лет работы атомной отрасли, хватит на несколько сотен лет генерации», – говорит доктор физматнаук А. Крюков.

«Брест» и есть тот революционный проект. Работы над ним начались ещё в конце 1980-х гг., их ведёт знаменитый разработчик ядерных установок для подводных лодок НИИ Энерготехники (НИИЭТ). Поворотным моментом стало выступление В. Путина на «саммите тысячелетия» в ООН.

Там он пообещал миру новую ядерную энергетику, чистую, безопасную, исключающую оружейное применение. Речь шла как раз о «Брестах». С тех пор дело сильно двинулось вперёд. В 2010 г. правительство приняло госпрограмму «Ядерные технологии нового поколения до 2015 года» с бюджетом 160 млрд рублей.

Срок подошёл, проект готов, технические документы уже на госкомиссии. Тем временем Росатом начал строительство завода, на котором отработанное топливо будет превращаться в обогащённые таблетки для «Бреста».

Первый опытный образец получит мощность 300 МВт, серийные «Бресты» будут на 700–1200 мегаватт. Это больше мощности основной тягловой лошадки сегодняшней российской атомной энергетики, реактора ВВЭР-1000.

Надежный БРЕСТ

Оригинальный подход в развитии БН-реакторов демонстрирует НИКИЭТ, разработавший проект реакторной установки БРЕСТ для атомных электростанций высокой безопасности и экономичности для крупномасштабной ядерной энергетики будущего.

БРЕСТ - энергоблок с быстрым реактором со свинцовым теплоносителем и мононитридным уран-плутониевым топливом с двухконтурной схемой отвода тепла к турбине с закритическими параметрами пара. Предлагаются проекты в конфигурациях с электрической мощностью 300 и 1200 МВт.

Достоинства реактора:

  • - естественная радиационная безопасность при любых возможных авариях по внутренним и внешним причинам, включая диверсии, не требующая эвакуации населения;
  • - долговременная (практически неограниченная во времени) обеспеченность топливными ресурсами за счет эффективного использования природного урана;
  • - нераспространение ядерного оружия за счет исключения наработки плутония оружейного качества и пристанционной реализации технологии сухой переработки топлива без разделения урана и плутония;
  • - экологичность производства энергии и утилизации отходов за счет замыкания топливного цикла с трансмутацией и сжиганием в реакторе актиноидов, трансмутацией долгоживущих продуктов деления, очисткой РАО от актиноидов, выдержкой и захоронением РАО без нарушения природного радиационного равновесия;
  • - экономическая конкурентоспособность за счет естественной безопасности АЭС и технологий топливного цикла, отказа от сложных инженерных систем безопасности, подпитки реактора только 238U , высоких параметров свинца, обеспечивающих закритические параметры паротурбинного контура и высокий КПД термодинамического цикла, удешевления строительства.

Сочетание природных свойств свинцового теплоносителя, мононитридного топлива, физических характеристик быстрого реактора, конструкторских решений активной зоны и контуров охлаждения выводит БРЕСТ на качественно новый уровень естественной безопасности и обеспечивает его устойчивость без срабатывания активных средств аварийной защиты в крайне тяжелых авариях, непреодолимых ни одним из существующих и проектируемых реакторов:

  • самоход всех органов регулирования
  • отключение (заклинивание) всех насосов первого контура
  • отключение (заклинивание) всех насосов второго контура
  • разгерметизация корпуса ректора
  • разрыв трубопроводов второго контура по любому сечению или трубок парогенератора
  • наложение различных аварий
  • неограниченное по времени расхолаживание при полном отключении питания и др.

Даже предельные аварии диверсионного происхождения с разрушением внешних барьеров (здания реактора, крышки корпуса и др.) не приводят к радиоактивным выбросам, требующим эвакуации населения и длительного отчуждения земли.

Выполненные экономические оценки и сравнения подтверждают возможность снижения капитальных затрат на АЭС и стоимости производимой электроэнергии по сравнению с АЭС с реактором ВВЭР.

Реализовать проект НИКИЭТ предлагается путём строительства опытно-демонстрационной станции с реакторной установкой БРЕСТ-ОД-300 с пристанционным топливным циклом на площадке Белоярской АЭС.

Такой комплекс, расположенный рядом с реактором, - очередное преимущество БРЕСТа с точки зрения создания ЗЯТЦ. По мнению сторонников быстрых энергетических реакторов этого типа, характеристики безопасности делают возможным их строительство вблизи крупных населённых пунктов, в том числе в роли атомных станций теплоснабжения.

Общий вид реактора БРЕСТ-300


Реактор БРЕСТ-1200


Вообще масса плюсов перед нынешними реакторами у реакторов на быстрых нейтронах:

  • Внутри реактора давление атмосферное -> меньше опасность взрыва (в водных реакторах давление 50-150 атмосфер даже в обычных условиях, а уж при аварии …).
  • Как следствие, нет необходимости в стальном коконе вокруг всей этой байды - огромное давление держать нет необходимости
  • Всеядность - жрёт 238й уран, которого в природе в десятки раз больше 235го, и плутоний, который в больших количествах нарабатывается в набившем оскомину «отработанном ядерном топливе». То есть, по сути, ОЯТ это практически готовое топливо для реакторов на БН.

Плюс к тому, у данного реактора свинцовый теплоноситель - отлично придумано.

Даже в самом крайнем случае активная зона стечёт на дно реактора и автоматически сверху накроется толстенным слоем свинца, который заэкранирует радиацию. Плюс к тому, свинец поглощает нейтроны и минимизирует реакции ядерного синтеза. У нынешних реакторов на БН в качестве теплоносителя используется натрий, а он жутко химически активен, в случае прорыва контура входит в бурную реакцию с бетоном, горит и так далее. Хорошо хоть не ядовит.

Отрадно сознавать, что по части ядерной энергетики Россия реально впереди планеты всей.

This entry passed through the Full-Text RSS service - if this is your content and you’re reading it on someone else’s site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers.

«Росатом» подготовил перспективную программу развития атомной энергетики, но эксперты считают, что это путь в прошлое

Осенью прошлого года Правительство РФ утвердило проект «Прорыв» - план «Росатома» по сооружению в стране до 2030 года ряда объектов ядерной энергетики и отработке технологии полного замыкания ядерного топливного цикла. На Татарской АЭС будет построен и введён в эксплуатацию один энергоблок с реактором ВВЭР--ТОИ мощностью 1250 МВт, на Нижегородской АЭС - два подобных энергоблока на 2510 МВт, на Белоярской АЭС - энергоблок №5 с реактором на быстрых нейтронах БН--1200, в Челябинской области - Южноуральская АЭС с реактором на быстрых нейтронах на 1200 МВт, в Северске Томской области - реактор БРЕСТ--300.

Принятие столь масштабной программы, несомненно, ограничит возможности финансирования государством любых других энергетических проектов, ведь стоимость строительства одной только Курской АЭС--2 превысит 200 миллиардов рублей. Неудивительно поэтому, что не все наши эксперты безоговорочно поддержали это решение правительства, а некоторые выступили с разумной критикой по этому поводу.

ЧТО ДАДУТ «БЫСТРЫЕ» НЕЙТРОНЫ

Цивилизованный мир по-прежнему держится на углеводородной энергетике - львиная доля электричества, которое мы потребляем, получена путём сжигания нефти и газа. Но запасов углеводородов на планете хватит ещё на 40-60 лет, спад в добыче нефти и газа может начаться уже с 2020 года. Так что вопрос о том, как жить дальше, с каждым днём становится всё острее, а работы по поиску энергетической альтернативы - всё масштабнее.

Если не считать возможности использования энергии ветра и Солнца, до недавнего времени науке были известны всего две такие возможности: извлечение энергии при делении ядер тяжёлых элементов и при слиянии ядер самого лёгкого - водорода. Обе весьма опасны: в первой приходится приручать атомный взрыв, во второй - термоядерную реакцию, которая питает звёзды и пугает нас водородной бомбой. Воплощение первого пути - атомная энергетика развивается с середины прошлого века, однако её доля в мировом энергобалансе меньше, чем даже вклад ветровой и солнечной энергетики - всего 5,5%.

Существует два класса ядерных реакторов: на медленных нейтронах (например, водо-водяные, или ВВЭР) и на быстрых нейтронах. ВВЭР относительно безопасны в эксплуатации и составляют основу современной мировой атомной энергетики. Но работают они только на уране, обогащённом примерно до 5%, и это большая проблема, ведь даже при действующем уровне потребления мировые запасы урана с разумной стоимостью добычи, до 130 долларов за килограмм, истощатся примерно через 100 лет.

Реакторы на быстрых нейтронах (их называют бридерами, то есть размножителями) отличаются от всех остальных: плотность тепловыделения в них в разы больше, и в качестве теплоносителя вместо воды в них приходится использовать жидкий натрий или свинец. Там происходит очень интенсивное выделение нейтронов, которые поглощаются слоем урана--238, расположенного вокруг активной зоны. Этот уран превращается в плутоний--239, который затем тоже может использоваться в реакторе как делящийся элемент.

Программа «Росатома» предполагает использовать блоки с «быстрыми» реакторами в сочетании с реакторами на тепловых нейтронах. По идее, бридеры помогут решить проблему накопления отработанного ядерного топлива (ОЯТ) «тепловых» реакторов и приблизиться к так называемому замкнутому ядерному топливному циклу (ЗЯТЦ) - когда объём и токсичность захораниваемого ОЯТ сравняется с объёмом и токсичностью природного сырья «на входе».

Общий недостаток всей современной атомной энергетики состоит в том, что она фактически исключает возможность контроля за нераспространением ядерного оружия на Земле: каждое государство, имеющее современную АЭС, которая постоянно производит плутоний, теоретически может сделать свою собственную атомную дубину.

Второй путь предполагает генерацию энергии при управляемой термоядерной реакции. Однако термоядерные исследования в магнитных ловушках, проводимые в мире более 60 лет, так и не привели к созданию функционирующего реактора даже с КПД, равным нулю - все они требуют куда больше энергии, чем вырабатывают сами. А нерешённые проблемы однозначно выльются в многомиллиардные затраты и десятки лет исследований. И вот вопрос: а есть ли у нас столько времени? Можем ли мы позволить себе ошибку в выборе энергетических приоритетов?

КТО ПРОТИВ И ПОЧЕМУ?

Бывший заместитель директора ВНИИ атомного энергетического машиностроения, профессор Игорь Острецов с единомышленниками, работая ещё в советском Минатоме, обнаружил: при облучении протонами высоких энергий даже свинца или отработанного ядерного топлива реакция деления с выделением энергии тоже происходит, но осколки деления имеют иной изотопный состав и быстро теряют активность.

На этой основе он разработал новый способ извлечения энергии атома - релятивистскую ядерную технологию - и предложил свою программу развития ядерной энергетики, не без основания считая её совершенно безальтернативной. В самом деле, запасы природного и отвального (обеднённого) урана на планете весьма велики, а проблема нераспространения и задача утилизации отработанного ядерного топлива решаются при таком образе действий сами собой.

- Игорь Николаевич, а что не так с бридерами?

Мы не только обеими ногами встали на дорожку развития бридерной технологии получения атомной энергии, но уже и бежим по ней во весь опор. А дорожка-то скользкая и ведёт в тупик, ибо коэффициент воспроизводства топлива в этой технологии - меньше единицы. Увеличить вклад атомной энергетики в общемировой энергетический баланс таким способом не удастся. Бридеры критически нуждаются в высокообогащённом уране. Запасы же такого урана в природе крайне ограничены, мир уже сегодня ощущает урановый дефицит. Вопрос: а может ли такая технология стать полноценной альтернативой углеводородной энергетике? Ответ однозначный: нет, не может. Мало того, она сложна и потому требует огромных ресурсов. Наконец, она крайне опасна. Одно из её «тонких мест» - система охлаждения, где циркулирует жидкий натрий. На открытом воздухе он жадно поглощает атмосферную влагу, горит и взрывается, и водой его не зальёшь. А в бридере, наполненном радиоактивным топливом, этого натрия десятки тонн - что если авария? Но аварии сопровождают развитие бридеров с самого начала. Первый в мире бридер, «Энрико Ферми», в 1957--м запустили США, серьёзная авария произошла там уже в 1966--м, и в 1972--м он остановлен. В 1995 году в Японии из--за утечки 20 тонн радиоактивного натрия едва не взлетел на воздух бридер «Монзю». Оба французских бридера, «Феникс» и «Суперфеникс», тоже были заглушены из--за неполадок.

- Но в США при Буше была даже принята национальная программа по развитию реакторов на «быстрых» нейтронах.

Впечатление такое, что это были пустые декларации, с одной лишь целью - заставить нас выбрать этот путь и пойти по нему. Подождать, пока мы создадим программу, мобилизуем ресурсы, производственные мощности, специалистов, а самим после двинуть в другую сторону. На этой волне у нас и была сформирована программа «Прорыв» (консолидация достижений в разработке реакторов большой мощности на быстрых нейтронах, технологии ЗЯТЦ и новых видов топлива для создания ядерно-энергетического комплекса, основанного на системе АЭС с бридерами - Ред .).

А у них после этого к власти пришёл Обама и свернул бридерную программу США как абсолютно абсурдную. И назначил министром энергетики США человека из Массачусетского технологического института Эрнеста Мониза, специалиста по ускорителям элементарных частиц. Я считаю этот шаг знаковым, внимательному наблюдателю он всё объясняет.

Альтернатива бридерам есть: это новый метод генерации энергии, который мы назвали ядерными релятивистскими технологиями (ЯРТ). Принцип - совместить ядерный реактор с ускорителем элементарных частиц. Результат - ядерная релятивистская электростанция, ЯРЭС - без сверхкритической массы делящихся продуктов и потому абсолютно взрывобезопасная. Она сможет работать на уране из отвалов радиохимических предприятий, на природном уране, на тории. И будет способна «дожигать» в короткоживущие изотопы всю ту гадость, которую сегодня мы не знаем, куда девать - радиоактивные отходы и облучённое ядерное топливо, а также полностью перерабатывать долгоживущие продукты - актиноиды тепловыделяющих элементов подлодок и старых АЭС. Что сократит объём радиоактивных отходов в разы и решит проблему нехватки урана для атомных станций.

- Звучит фантастически.

Всё основано на отечественных разработках. Сердце ЯРЭС - линейный ускоритель Богомолова на обратной волне, сверхкомпактная машина по производству протонов с энергиями порядка 10 ГэВ (гигаэлектронвольт). Классическому ускорителю на каждый ГэВ на выходе нужен 1 километр длины (на 4 ГэВ - 4 километра). А 4- ГэВ-ускоритель Богомолова легко помещается в грузовой отсек транспортного самолёта Ан--124 «Руслан». Это советская разработка, изобретение моего сокурсника по МФТИ Алексея Богомолова. Не все ещё забыли разговоры про советский асимметричный и недорогой ответ на американскую программу «звёздных войн» Рональда Рейгана? Богомоловская машина была частью советского ответа Рейгану - габаритами с железнодорожный вагон, на борту «Руслана» она становится обнаружителем ядерного оружия на большом расстоянии и может уничтожать его пучком протонов. Будь она сегодня на вооружении отечественной морской авиации, фактически обнулила бы весь авианосный флот США.

- Почему же у нас до сих пор нет госпрограммы развития ЯРТ?

Этот вопрос не ко мне. Да, рядом аспектов ЯРТ, глубоко подкритичными системами, занимается Физико--энергетический институт им. А.И. Лейпунского в городе Обнинске (ФЭИ). Некоторые эксперименты ведутся и в Дубне, но при очень скудном финансировании. Бьётся за ЯРТ Валерий Чилап, глава Центра физико-технических проектов «Атомэнергомаш», с ним мы начинали эту работу. Он вложил в эксперименты по ЯРТ на массивной урановой сборке в Дубне почти все собственные средства и годами обивает пороги росатомовского начальства, добиваясь (задумаемся!) объективной экспертизы проекта разработки ЯРТ.

Нет, вы понимаете, до чего мы дошли? Как можно держать такие вещи в долгом ящике? Люди, представляющие интересы государства в важнейших вопросах национальной безопасности, настолько безответственны, до такой степени не боятся совершить ошибку, которая может стоить России её суверенитета (не забыли, что, с недавних пор, бывший министр энергетики США - специалист по ускорителям частиц?).

Кстати: кто сегодня знает, что мы создали радиолокатор на год раньше британцев? Был такой Павел Ощепков, служил на Алтае лейтенантом инженерных войск.

Он сообразил, как определять положение и скорость самолётов при помощи электромагнитных волн. Придумал конструкцию и, как положено, написал докладную своему начальнику. Тот ничего не понял и отправил докладную наверх. Так бумага Ощепкова миновала с десяток командиров и за один (!) месяц добралась до стола самого Ворошилова. Тот тоже ничего не понял и тоже ответственности на себя не взял - собрал экстренное заседание Академии наук СССР и пригласил туда изобретателя. Академики его выслушали и постановили: по науке всё возможно, но априори результат неизвестен. Поэтому академику Иоффе и лейтенанту Ощепкову решили выделить людей и средства для постройки прототипа и его полевых испытаний. Результат доложили «самому» ещё через месяц: есть радиолокатор! В 1934 году. Вот что значит система.

Профессор И.Н. Острецов во время эксперимента в Протвино

СТАВКИ СДЕЛАНЫ?

Для полноты картины мы задали прямой вопрос руководителю проекта департамента коммуникаций Госкорпорации «Росатом» Андрею Иванову: существует ли консолидированное мнение экспертов «Росатома» по предложениям Острецова и его единомышленников?

Андрей Иванов изложил официальную позицию госкорпорации с исчерпывающей ясностью: «Какой--либо государственной программы или проекта ЯРТ на уровне ведущих российских институтов или РАН в настоящее время нет».

А источник, близкий к «Росатому» и пожелавший остаться за кадром, пояснил, что никто в корпорации проекта ядерной релятивистской технологии (ЯРТ) Острецова не видел, не говоря уж о научном и экономическом обосновании тех идей, которые тот постоянно озвучивает для СМИ.

«Но даже если бы он и представил нечто подобное на нашу экспертизу, полагаю, что обратился бы он не по адресу, ведь «Росатом» - это организация практиков, мы воплощаем в жизнь инновации, уже прошедшие путь от физической идеи до надёжно, эффективно и безопасно работающих энергетических установок. А с голыми идеями ему надо в Курчатовский институт, это их прямой профиль. И не будем изображать «Росатом» этаким монстром, который тормозит прогресс человечества. Просто потому, что объективно это не так. Мы - практики, этим и интересны», - добавил он.

Что же касается состоятельности собственной энергетической программы «Росатома», то своё мнение высказали ряд ведущих специалистов отрасли.

Андрей Говердовский, директор ГНЦ ФЭИ им. Лейпунского:

Да, в топливе реакторов ВВЭР используется уран-235, реакторы же на быстрых нейтронах уникальны - они способны размножать топливо, превращая непригодный для «горения» уран-238 в пригодный для «горения» плутоний. Да, здесь есть много проблем. Необходимо заставить вращаться топливо внутри замкнутой энергетической системы, попутно сжигать много радиоактивных отходов. Эти проблемы и решает проект «Прорыв», создавая реакторы и систему обращения с ОЯТ для замкнутого ядерного топливного цикла. И реакторы на быстрых нейтронах - его основа. Мы в России более 30 лет эффективно эксплуатируем БН-600 с натриевым теплоносителем, сейчас ввели в работу БН-800. В атомной энергетике будущего, которая решит проблему накопленных отходов, мы - мировые лидеры.

Валерий Беззубцев, замгендиректора, директор по технологическому развитию АО «Концерн Росэнергоатом»:

Цель проекта сооружения энергоблока с реактором БН-800 - переход от открытого топливного цикла с урановым топливом (БН-600) к замкнутому топливному циклу с уранплутониевым смешанным топливом, создание пилотного производства смешанного топлива и отработка замкнутого цикла с его внедрением в производство. Эта технология основана на использовании уранплутониевого топлива и взаимодополняющей работы традиционных и «быстрых» реакторов, способной обеспечить сырьевую независимость и малоотходность атомной энергетики России. Она вовлекает в энергопроизводство уран-238 из накопленных отвалов, отработавшее ядерное топливо и накопленный плутоний, чем минимизирует отходы, подлежащие окончательной изоляции.

Главное для нас - безопасность: хотя у нас уже есть многолетний успешный опыт эксплуатации БН-600, этого недостаточно. Поэтому проект БН-800 включает пассивные системы безопасности, которые обеспечивают минимальную вероятность аварии с расплавлением активной зоны и исключают выделение плутония в топливном цикле при переработке облучённого ядерного топлива. Этот проект нужен для отработки технологии реакторов на «быстрых» нейтронах с использованием уранплутониевого топлива. Этот опыт будет учтён в проекте БН-1200 - после разработки и утверждения проектной документации, успешного строительства и опыта эксплуатации «головного» энергоблока он должен стать первым в серии таких же БН-1200 на других АЭС. Реактор БН-800 нужен и для отработки технологий ЗЯТЦ - на нём будет использоваться МОКС-топливо на основе плутония, выделенного при переработке уже отработавшего ядерного топлива других реакторов. В настоящее время такой плутоний хранится на складах, и наша задача - утилизировать его в быстрых реакторах.

Отмечу, что не мы одни сделали ставку на быстрые реакторы: ещё в 1987 году руководство КНР включило в свою госпрограмму по развитию высоких технологий проект 863, «Развитие технологии быстрого реактора-бридера». Они решили создать у себя экспериментальный реактор на «быстрых» нейтронах CEFR, 65 МВт тепловой мощности и 20 МВт - электрической, и для оптимизации расходов привлечь иностранцев. Их выбор пал на Россию, что неудивительно - именно у нас самый большой в мире опыт в этой сфере. Это наше сотрудничество с КНР началось в 1992 году, в июле 2010 года мы совместно совершили успешный пуск экспериментального реактора CEFR, в 2011-м подключили его к электросети. А в августе 2010-го РФ и КНР подписали соглашение о строительстве двух энергоблоков на быстрых нейтронах типа БН-800. По стратегическому плану развития атомной энергетики КНР замыкание ядерно-топливного цикла будет достигнуто ими в 2030-х годах. И мы хорошо знаем, как китайцы умеют выполнять то, что наметили.

ЯДЕРНЫЙ КАСКАД

Готовя этот текст к публикации, мы решили узнать, удовлетворён ли профессор Острецов реакцией экспертов «Росатома». Вот что сказал нам Игорь Николаевич:

Хорошо, что «Росатом» наконец-то обозначил свою позицию по ЯРТ. Она, как мы видим, сводится к следующим положениям:

1. Искать новые направления в развитии атомной энергетики - не его дело. Этим должен заниматься Курчатовский институт.

2. Очевидно, поэтому он развивает только то, что получил в наследство от советской атомной промышленности.

3. Для поддержки ЯРТ ему нужны хорошо проработанные предложения.

4. Таким образом, решение может принять только руководство страны. Оно должно собрать и провести совещание по этому вопросу, иначе, как говорит НИЦ «Курчатовский институт»: «Сейчас живёт последнее поколение людей».

Позиция Курчатовского института сегодня однозначна: поскольку в бридерах коэффициент воспроизводства топлива - меньше единицы, без создания мощного источника нейтронов в ближайшей перспективе человечество не выживет. В чём я с ними полностью согласен. Однако в качестве источника нейтронов для извлечения энергии атома эксперты института предлагают термоядерный источник нейтронов, который ещё не создан. Я же предлагаю использовать для этого ядерный каскад, инициированный релятивистскими заряженными частицами в актиноидной мишени полного поглощения, то есть ЯРТ. И считаю, что другой альтернативы для выживания человечества в XXI веке нет.

В середине августа прошлого года президент Владимир Путин поручил правительству, Госкорпорации «Росатом» и НИЦ «Курчатовский институт» подготовить до 1 марта 2017 года предложения о возможности применения в качестве перспективного сырья для ядерного топлива… тория. Его содержание в земной коре в 45 раз выше содержания урана, а месторождения более доступны. Заметим, что в контексте нашего разговора этот вариант имеет явные признаки временного компромисса. К настоящему моменту, однако, по открытым источникам не проходило никаких данных о результатах исполнения этого поручения президента.

ИЗ ДОСЬЕ «СОВЕРШЕННО СЕКРЕТНО»:

Игорь Острецов - д. т. н., профессор, бывший заместитель директора ВНИИ атомного энергетического машиностроения, один из виднейших специалистов по атомной энергетике, автор ряда важных открытий в этой области, руководитель работ по ликвидации последствий аварии на Чернобыльской АЭС со стороны Министерства энергетического машиностроения СССР.

В 1998 году он провёл эксперимент по облучению свинцовой сборки протонами с энергией 5 ГэВ на большом ускорителе Института ядерной физики в Дубне. Очень слабо делящийся свинец нагрелся в разы сильнее, чем предсказывалось известными расчётными кодами! Это были первые указания на возможность создания релятивистской ядерной энергетики - сочетания ускорителя и подкритического реактора, где не нужны ни уран-235, ни плутоний-239. В 2002-м аналогичный опыт был проведён под его руководством на ускорителе в Протвино. 12-часовое облучение свинцовой мишени протонами в диапазоне энергий от 6 до 20 ГэВ привело к тому, что свинец, который сразу после облучения очень сильно «светил», уже через 10 дней снизил активность до уровня естественного фона. Было доказано: ядерная релятивистская энергетика на «грубых» видах топлива - на обеднённом уране, тории, отработанном ядерном топливе - возможна. Провести подобные эксперименты с торием и ураном--238 Острецову не удалось из-за организационных проблем.



поделиться:


Вверх