Возведение многочленов в квадрат. Возведение числа в квадрат в Microsoft Excel

Сегодня мы научимся быстро без калькулятора возводить большие выражения в квадрат. Под большими я подразумеваю числа в пределах от десяти до ста. Большие выражения крайне редко встречаются в настоящих задачах, а значения меньше десяти вы и так умеете считать, потому что это обычная таблица умножения. Материал сегодняшнего урока будет полезен достаточно опытным ученикам, потому что начинающие ученики просто не оценят скорость и эффективность этого приема.

Для начала давайте разберемся вообще, о чем идет речь. Предлагаю для примера сделать возведение произвольного числового выражения, как мы обычно это делаем. Скажем, 34. Возводим его, умножив само на себя столбиком:

\[{{34}^{2}}=\times \frac{34}{\frac{34}{+\frac{136}{\frac{102}{1156}}}}\]

1156 — это и есть квадрат 34.

Проблему данного способа можно описать двумя пунктами:

1) он требует письменного оформления;

2) в процессе вычисления очень легко допустить ошибку.

Сегодня мы научимся быстрому умножению без калькулятора, устно и практически без ошибок.

Итак, приступим. Для работы нам потребуется формула квадрата суммы и разности. Давайте запишем их:

\[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]

\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]

Что нам это дает? Дело в том, что любое значение в пределах от 10 до 100 представимо в виде числа $a$, которое делится на 10, и числа $b$, которое является остатком от деления на 10.

Например, 28 можно представить в следующем виде:

\[\begin{align}& {{28}^{2}} \\& 20+8 \\& 30-2 \\\end{align}\]

Аналогично представляем оставшиеся примеры:

\[\begin{align}& {{51}^{2}} \\& 50+1 \\& 60-9 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 70+7 \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\& 30-9 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 20+6 \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 30+9 \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\& 90-9 \\\end{align}\]

Что дает нам такое представление? Дело в том, что при сумме или разности, мы можем применить вышеописанные выкладки. Разумеется, чтобы сократить вычисления, для каждого из элементов следует выбрать выражение с наименьшим вторым слагаемым. Например, из вариантов $20+8$ и $30-2$ следует выбрать вариант $30-2$.

Аналогично выбираем варианты и для остальных примеров:

\[\begin{align}& {{28}^{2}} \\& 30-2 \\\end{align}\]

\[\begin{align}& {{51}^{2}} \\& 50+1 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\\end{align}\]

Почему следует стремиться к уменьшению второго слагаемого при быстром умножении? Все дело в исходных выкладках квадрата суммы и разности. Дело в том, что слагаемое $2ab$ с плюсом или с минусом труднее всего считается при решении настоящих задач. И если множитель $a$, кратный 10, всегда перемножается легко, то вот с множителем $b$, который является числом в пределах от одного до десяти, у многих учеников регулярно возникают затруднения.

\[{{28}^{2}}={{(30-2)}^{2}}=200-120+4=784\]

\[{{51}^{2}}={{(50+1)}^{2}}=2500+100+1=2601\]

\[{{42}^{2}}={{(40+2)}^{2}}=1600+160+4=1764\]

\[{{77}^{2}}={{(80-3)}^{2}}=6400-480+9=5929\]

\[{{21}^{2}}={{(20+1)}^{2}}=400+40+1=441\]

\[{{26}^{2}}={{(30-4)}^{2}}=900-240+16=676\]

\[{{39}^{2}}={{(40-1)}^{2}}=1600-80+1=1521\]

\[{{81}^{2}}={{(80+1)}^{2}}=6400+160+1=6561\]

Вот так за три минуты мы сделали умножение восьми примеров. Это меньше 25 секунд на каждое выражение. В реальности после небольшой тренировки вы будете считать еще быстрее. На подсчет любого двухзначного выражения у вас будет уходить не более пяти-шести секунд.

Но и это еще не все. Для тех, кому показанный прием кажется недостаточно быстрым и недостаточно крутым, предлагаю еще более быстрый способ умножения, который однако работает не для всех заданий, а лишь для тех, которые на единицу отличаются от кратных 10. В нашем уроке таких значений четыре: 51, 21, 81 и 39.

Казалось бы, куда уж быстрее, мы и так считаем их буквально в пару строчек. Но, на самом деле, ускориться можно, и делается это следующим образом. Записываем значение, кратное десяти, которое наиболее близкое нужному. Например, возьмем 51. Поэтому для начала возведем пятьдесят:

\[{{50}^{2}}=2500\]

Значения, кратные десяти, поддаются возведению в квадрат намного проще. А теперь к исходному выражению просто добавляем пятьдесят и 51. Ответ получится тот же самый:

\[{{51}^{2}}=2500+50+51=2601\]

И так со всеми числами, отличающимися на единицу.

Если значение, которое мы ищем, больше, чем то, которое мы считаем, то к полученному квадрату мы прибавляем числа. Если же искомое число меньше, как в случае с 39, то при выполнении действия, из квадрата нужно вычесть значение. Давайте потренируемся без использования калькулятора:

\[{{21}^{2}}=400+20+21=441\]

\[{{39}^{2}}=1600-40-39=1521\]

\[{{81}^{2}}=6400+80+81=6561\]

Как видите, во всех случаях ответы получаются одинаковыми. Более того, данный прием применим к любым смежным значениям. Например:

\[\begin{align}& {{26}^{2}}=625+25+26=676 \\& 26=25+1 \\\end{align}\]

При этом нам совсем не нужно вспоминать выкладки квадратов суммы и разности и использовать калькулятор. Скорость работы выше всяких похвал. Поэтому запоминайте, тренируйтесь и используйте на практике.

Ключевые моменты

С помощью этого приема вы сможете легко делать умножение любых натуральных чисел в пределах от 10 до 100. Причем все расчеты выполняются устно, без калькулятора и даже без бумаги!

Для начала запомните квадраты значений, кратных 10:

\[\begin{align}& {{10}^{2}}=100,{{20}^{2}}=400,{{30}^{2}}=900,..., \\& {{80}^{2}}=6400,{{90}^{2}}=8100. \\\end{align}\]

\[\begin{align}& {{34}^{2}}={{(30+4)}^{2}}={{30}^{2}}+2\cdot 30\cdot 4+{{4}^{2}}= \\& =900+240+16=1156; \\\end{align}\]

\[\begin{align}& {{27}^{2}}={{(30-3)}^{2}}={{30}^{2}}-2\cdot 30\cdot 3+{{3}^{2}}= \\& =900-180+9=729. \\\end{align}\]

Как считать еще быстрее

Но это еще не все! С помощью данных выражений моментально можно сделать возведение в квадрат чисел, «смежных» с опорными. Например, мы знаем 152 (опорное значение), а надо найти 142 (смежное число, которое на единицу меньше опорного). Давайте запишем:

\[\begin{align}& {{14}^{2}}={{15}^{2}}-14-15= \\& =225-29=196. \\\end{align}\]

Обратите внимание: никакой мистики! Квадраты чисел, отличающиеся на 1, действительно получаются из умножения самих на себя опорных чисел, если вычесть или добавить два значения:

\[\begin{align}& {{31}^{2}}={{30}^{2}}+30+31= \\& =900+61=961. \\\end{align}\]

Почему так происходит? Давайте запишем формулу квадрата суммы (и разности). Пусть $n$ — наше опорное значение. Тогда они считаются так:

\[\begin{align}& {{(n-1)}^{2}}=(n-1)(n-1)= \\& =(n-1)\cdot n-(n-1)= \\& =={{n}^{2}}-n-(n-1) \\\end{align}\]

— это и есть формула.

\[\begin{align}& {{(n+1)}^{2}}=(n+1)(n+1)= \\& =(n+1)\cdot n+(n+1)= \\& ={{n}^{2}}+n+(n+1) \\\end{align}\]

— аналогичная формула для чисел, больших на 1.

Надеюсь, данный прием сэкономит вам время на всех ответственных контрольных и экзаменах по математике. А у меня на этом все. До встречи!

23 октября 2016 в 16:37

Красота чисел. Как быстро вычислять в уме

  • Научно-популярное

Старинная запись на квитанции в уплате подати («ясака»). Она означает сумму 1232 руб. 24 коп. Иллюстрация из книги: Яков Перельман «Занимательная арифметика»

Ещё Ричард Фейнман в книге «Вы конечно шутите, мистер Фейнман! » поведал несколько приёмов устного счёта. Хотя это очень простые трюки, они не всегда входят в школьную программу.

Например, чтобы быстро возвести в квадрат число X около 50 (50 2 = 2500), нужно вычитать/прибавлять по сотне на каждую единицы разницы между 50 и X, а потом добавить разницу в квадрате. Описание звучит гораздо сложнее, чем реальное вычисление.

52 2 = 2500 + 200 + 4
47 2 = 2500 – 300 + 9
58 2 = 2500 + 800 + 64

Молодого Фейнмана научил этому трюку коллега-физик Ханс Бете, тоже работавший в то время в Лос-Аламосе над Манхэттенским проектом.

Ханс показал ещё несколько приёмов, которые использовал для быстрых вычислений. Например, для вычисления кубических корней и возведения в степень удобно помнить таблицу логарифмов. Это знание очень упрощает сложные арифметические операции. Например, вычислить в уме примерное значение кубического корня из 2,5. Фактически, при таких вычислениях в голове у вас работает своеобразная логарифмическая линейка, в которой умножение и деление чисел заменяется сложением и вычитанием их логарифмов. Удобнейшая вещь.


Логарифмическая линейка

До появления компьютеров и калькуляторов логарифмическую линейку использовали повсеместно. Это своеобразный аналоговый «компьютер», позволяющий выполнить несколько математических операций, в том числе умножение и деление чисел, возведение в квадрат и куб, вычисление квадратных и кубических корней, вычисление логарифмов, потенцирование, вычисление тригонометрических и гиперболических функций и некоторые другие операции. Если разбить вычисление на три действия, то с помощью логарифмической линейки можно возводить числа в любую действительную степень и извлекать корень любой действительной степени. Точность расчётов - около 3 значащих цифр.

Чтобы быстро проводить в уме сложные расчёты даже без логарифмической линейки, неплохо запомнить квадраты всех чисел, хотя бы до 25, просто потому что они часто используются в расчётах. И таблицу степеней - самых распространённых. Проще запомнить, чем вычислять каждый раз заново, что 5 4 = 625, 3 5 = 243, 2 20 = 1 048 576, а √3 ≈ 1,732.

Ричард Фейнман совершенствовал свои навыки и постепенно замечал всё новые интересные закономерности и связи между числами. Он приводит такой пример: «Если кто-то начинал делить 1 на 1,73, можно было незамедлительно ответить, что это будет 0,577, потому что 1,73 - это число, близкое к квадратному корню из трёх. Таким образом, 1/1,73 - это около одной трети квадратного корня из 3».

Настолько продвинутый устный счёт мог бы удивить коллег в те времена, когда не было компьютеров и калькуляторов. В те времена абсолютно все учёные умели хорошо считать в уме, поэтому для достижения мастерства требовалось достаточно глубоко погрузиться в мир цифр.

В наше время люди достают калькулятор, чтобы просто поделить 76 на 3. Удивить окружающих стало гораздо проще. Во времена Фейнмана вместо калькулятора были деревянные счёты, на которых тоже можно было производить сложные операции, в том числе брать кубические корни. Великий физик уже тогда заметил, что использование таких инструментов, людям вообще не нужно запоминать множество арифметический комбинаций, а достаточно просто научиться правильно катать шарики. То есть люди с «расширителями» мозга не знают чисел. Они хуже справляются с задачами в «автономном» режиме.

Вот пять очень простых советов устного счёта, которые рекомендует Яков Перельман в методичке «Быстрый счёт » 1941 года издательства.

1. Если одно из умножаемых чисел разлагается на множители, удобно бывает последовательно умножать на них.

225 × 6 = 225 × 2 × 3 = 450 × 3
147 × 8 = 147 × 2 × 2 × 2, то есть трижды удвоить результат

2. При умножении на 4 достаточно дважды удвоить результат. Аналогично, при делении на 4 и 8, число делится пополам дважды или трижды.

3. При умножении на 5 или 25 число можно разделить на 2 или 4, а затем приписать к результату один или два нуля.

74 × 5 = 37 × 10
72 × 25 = 18 × 100

Здесь лучше сразу оценивать, как проще. Например, 31 × 25 удобнее умножать как 25 × 31 стандартным способом, то есть как 750+25, а не как 31 × 25, то есть 7,75 × 100.

При умножении на число, близкое к круглому (98, 103), удобно сразу умножить на круглое число (100), а затем вычесть/прибавить произведение разницы.

37 × 98 = 3700 – 74
37 × 104 = 3700 + 148

4. Чтобы возвести в квадрат число, оканчивающееся цифрой 5 (например, 85), умножают число десятков (8) на него же плюс единица (9), и приписывают 25.
8 × 9 = 72, приписываем 25, так что 85 2 = 7225

Почему действует это правило, видно из формулы:
(10Х + 5) 2 = 100Х 2 + 100Х + 25 = 100Х (X+1) + 25

Приём применяется и к десятичным дробям, которые оканчиваются на 5:
8,5 2 = 72,25
14,5 2 = 210,25
0,35 2 = 0,1225

5. При возведении в квадрат не забываем об удобной формуле
(a + b) 2 = a 2 + b 2 + 2ab
44 2 = 1600 + 16 + 320

Конечно же, все способы можно сочетать между собой, создавая более удобные и эффективные приёмы для конкретных ситуаций.

Рассмотрим теперь возведение в квадрат двучлена и, применяясь к арифметической точке зрения, будем говорить о квадрате суммы, т. е. (a + b)² и о квадрате разности двух чисел, т. е. (a – b)².

Так как (a + b)² = (a + b) ∙ (a + b),

то найдем: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b², т. е.

(a + b)² = a² + 2ab + b²

Этот результат полезно запомнить и в виде вышеописанного равенства и словами: квадрат суммы двух чисел равен квадрату первого числа плюс произведение двойки на первое число и на второе число, плюс квадрат второго числа.

Зная этот результат, мы можем сразу написать, напр.:

(x + y)² = x² + 2xy + y²
(3ab + 1)² = 9a² b² + 6ab + 1

(x n + 4x)² = x 2n + 8x n+1 + 16x 2

Разберем второй из этих примеров. Нам требуется возвести в квадрат сумму двух чисел: первое число есть 3ab, второе 1. Должно получиться: 1) квадрат первого числа, т. е. (3ab)², что равно 9a²b²; 2) произведение двойки на первое число и на второе, т. е. 2 ∙ 3ab ∙ 1 = 6ab; 3) квадрат 2-го числа, т. е. 1² = 1 – все эти три члена должно сложить между собою.

Совершенно также получим формулу для возведения в квадрат разности двух чисел, т. е. для (a – b)²:

(a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b².

(a – b)² = a² – 2ab + b² ,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа .

Зная этот результат, мы можем сразу выполнять возведение в квадрат двучленов, представляющих с точки зрения арифметики разность двух чисел.

(m – n)² = m² – 2mn + n²
(5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

(a n-1 – a) 2 = a 2n-2 – 2a n + a 2 и т. п.

Поясним 2-ой пример. Здесь мы имеем в скобках разность двух чисел: первое число 5ab 3 и второе число 3a 2 b. В результате должно получиться: 1) квадрат первого числа, т. е. (5ab 3) 2 = 25a 2 b 6 , 2) произведение двойки на 1-ое и на 2-ое число, т. е. 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 и 3) квадрат второго числа, т. е. (3a 2 b) 2 = 9a 4 b 2 ; первый и третий члены надо взять с плюсом, а 2-ой с минусом, получим 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 . В пояснение 4-го примера заметим лишь, что 1) (a n-1)2 = a 2n-2 … надо показателя степени умножить на 2 и 2) произведение двойки на 1-ое число и на 2-ое = 2 ∙ a n-1 ∙ a = 2a n .

Если встать на точку зрения алгебры, то оба равенства: 1) (a + b)² = a² + 2ab + b² и 2) (a – b)² = a² – 2ab + b² выражают одно и тоже, а именно: квадрат двучлена равен квадрату первого члена, плюс произведение числа (+2) на первый член и на второй, плюс квадрат второго члена. Это ясно, потому что наши равенства можно переписать в виде:

1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
2) (a – b)² = (+a)² + (+2) ∙ (+a) (–b) + (–b)²

В некоторых случаях так именно и удобно толковать полученные равенства:

(–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

Здесь возводится в квадрат двучлен, первый член которого = –4a и второй = –3b. Далее мы получим (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² и окончательно:

(–4a – 3b)² = 6a² + 24ab + 9b²

Возможно было бы также получить и запомнить формулу для возведения в квадрат трехчлена, четырехчлена и вообще любого многочлена. Однако, мы этого делать не будем, ибо применять эти формулы приходится редко, а если понадобится какой-либо многочлен (кроме двучлена) возвести в квадрат, то станем сводить дело к умножению. Например:

31. Применим полученные 3 равенства, а именно:

(a + b) (a – b) = a² – b²
(a + b)² = a² + 2ab + b²
(a – b)² = a² – 2ab + b²

к арифметике.

Пусть надо 41 ∙ 39. Тогда мы можем это представить в виде (40 + 1) (40 – 1) и свести дело к первому равенству – получим 40² – 1 или 1600 – 1 = 1599. Благодаря этому, легко выполнять в уме умножения вроде 21 ∙ 19; 22 ∙ 18; 31 ∙ 29; 32 ∙ 28; 71 ∙ 69 и т. д.

Пусть надо 41 ∙ 41; это все равно, что 41² или (40 + 1)² = 1600 + 80 + 1 = 1681. Также 35 ∙ 35 = 35² = (30 + 5)² = 900 + 300 + 25 = 1225. Если надо 37 ∙ 37, то это равно (40 – 3)² = 1600 – 240 + 9 = 1369. Подобные умножения (или возведение в квадрат двузначных чисел) легко выполнять, при некотором навыке, в уме.

Если умножить число само на себя, получится возведение в квадрат . Даже первоклассник знает, что «двукратно два - четыре». Трехзначные, четырехзначные и т.д. числа отменнее перемножать в столбик либо на калькуляторе, а вот с двузначными справляйтесь без электронного помощника, умножая в уме.

Инструкция

1. Разложите всякое двузначное число на составляющие, выделив число единиц. В числе 96 число единиц - 6. Следственно дозволено записать: 96 = 90 + 6.

2. Возведите в квадрат первое из чисел: 90 * 90 = 8100.

3. Подобно сделайте со вторым число м: 6 * 6 = 36

4. Перемножьте числа между собой и удвойте итог: 90 * 6 * 2 = 540 * 2 = 1080.

5. Сложите итоги второго, третьего и четвертого шагов: 8100 + 36 + 1080 = 9216. Это и есть итог возведения в квадрат числа 96. Позже некоторой тренировки сумеете стремительно делать шаги в уме, поражая родителей и одноклассников. Пока не освоились, записывайте итоги всего шага, дабы не запутаться.

6. Для тренировки возведите в квадрат число 74 и проверьте себя на калькуляторе. Последовательность действий: 74 = 70 + 4, 70 * 70 = 4900, 4 * 4 = 16, 70 * 4 * 2 = 560, 4900 + 16 + 560 = 5476.

7. Возведите во вторую степень число 81. Ваши действия: 81 = 80 + 1, 80 * 80 = 6400, 1 * 1 = 1, 80 * 1 * 2 = 160, 6400 + 1 + 160 = 6561.

8. Запомните нестандартный метод возведения в квадрат двузначных чисел, которые оканчиваются на цифру 5. Выделите число десятков: в числе 75 их 7 штук.

9. Умножьте число десятков на следующую цифру в число вом ряду: 7 * 8 = 56.

10. Припишите справа число 25: 5625 - итог возведения в квадрат числа 75.

11. Для тренировки возведите во вторую степень число 95. Оно оканчивается на цифру 5, следственно последовательность действий: 9 * 10 = 90, 9025 - итог.

12. Обучитесь возводить в квадрат негативные числа: -95 в квадрат е равно 9025, как в одиннадцатом шаге. Подобно -74 в квадрат е равно 5476, как в шестом шаге. Это связано с тем, что при умножении 2-х негативных чисел неизменно получается правильное число : -95 * -95 = 9025. Следственно при возведении в квадрат можете легко не обращать внимания на знак «минус».

Возведение числа в степень является одним из простейших алгебраических действий. В обыденной жизни возведение используется редко, а вот на производстве при выполнении расчетов – фактически повсюду, следственно пригодно припомнить, как это делается.

Инструкция

1. Представим, что мы имеем какое-то число а, степенью которого является число n. Построить число в степень обозначает, что нужно умножить число а на самоё себя n раз.

2. Разглядим несколько примеров.Дабы построить число 2 во вторую степень, нужно произвести действие:2х2=4

3. Дабы построить число 3 в пятую степень, нужно исполнить действие:3х3х3х3х3=243

4. Существует общепринятое обозначение 2-й и третьей степени чисел. Словосочетание «вторая степень» обыкновенно заменяется словом «квадрат», а взамен словосочетания «третья степень» традиционно говорят «куб».

5. Как видно из приведенных выше примеров, продолжительность и трудоемкость вычислений зависит от величины показателя степени числа. Возведение в квадрат либо куб – достаточно простая задача; возведение числа в пятую либо огромную степень теснее требует огромнее времени и аккуратности в вычислениях. Для убыстрения данного процесса и исключения ошибок дозволено воспользоваться особыми математическими таблицами либо инженерным калькулятором.

Для короткой записи произведения одного и того же числа самого на себя математики придумали представление степени. Следственно выражение 16*16*16*16*16 дозволено записать больше коротким методом. Оно будет иметь вид 16^5. Выражение будет читаться как число 16 в пятой степени.

Вам понадобится

  • Бумага, ручка.

Инструкция

1. В всеобщем виде степень записывается как a^n. Эта запись обозначает, что число a умножается на себя n раз.Выражение a^n именуется степень ю,a – это число, основание степени,n – это число, показатель степени. Скажем, a = 4, n = 5,Тогда запишем 4^5 = 4*4*4*4*4 = 1 024

2. Степень n может быть негативным числомn = -1, -2, -3 и т.д.Дабы вычислить негативную степень числа, его нужно опустить в знаменатель.a^(-n) = (1/a)^n = 1/a*1/a*1/a* … *1/a = 1/(a^n)Разглядим пример2^(-3) = (1/2)^3 = 1/2*1/2*1/2 = 1/(2^3) = 1/8 = 0,125

3. Как видно из примера, -3 степень от числа 2 дозволено вычислить различными методами.1) Вначале посчитать дробь 1/2 = 0,5; а после этого построить в степень 3,т.е. 0,5^3 = 0,5*0,5*0,5 = 0,1252) Вначале построить знаменатель в степень 2^3 = 2*2*2 = 8, а после этого вычислить дробь 1/8 = 0,125.

4. Сейчас вычислим -1 степень для числа, т.е. n = -1. Правила, рассмотренные выше, подходят для этого случая.a^(-1) = (1/a)^1 = 1/(a^1) = 1/aНапример, построим число 5 в -1 степень 5^(-1) = (1/5)^1 = 1/(5^1) = 1/5 = 0,2.

5. Из примера наглядно видно, что число в -1 степени – это обратная дробь от числа.Предположим число 5 в виде дроби 5/1, тогда 5^(-1) дозволено арифметически не считать, а сразу написать дробь, обратную 5/1, это 1/5.Так, 15^(-1) = 1/15,6^(-1) = 1/6,25^(-1) = 1/25

Обратите внимание!
При возведении числа в негативную степень следует помнить, что число не может быть равно нулю. Согласно правилу, мы обязаны число опустить в знаменатель. А нуль не может быть в знаменателе, так как на нуль разделять невозможно.

Полезный совет
Изредка при работе со степенями для облегчения расчета дробное число намеренно заменяют целым в -1 степени1/6 = 6^(-1)1/52 = 52^(-1).

При решении арифметических и алгебраических задач изредка требуется построить дробь в квадрат . Проще каждого это сделать, когда дробь десятичная – довольно обыкновенного калькулятора. Впрочем если дробь обычная либо смешанная, то при возведении такого числа в квадрат могут появиться некоторые затруднения.

Вам понадобится

  • калькулятор, компьютер, приложение Excel.

Инструкция

1. Дабы построить десятичную дробь в квадрат , возьмите инженерный калькулятор, наберите на нем возводимую в квадрат дробь и нажмите на клавишу возведения во вторую степень. На большинстве калькуляторов эта кнопка обозначена как «х?». На стандартном калькуляторе Windows функция возведения в квадрат выглядит как «x^2». Скажем, квадрат десятичной дроби 3,14 будет равен: 3,14? = 9,8596.

2. Дабы построить в квадрат десятичную дробь на обыкновенном (бухгалтерском) калькуляторе, умножьте это число само на себя. Кстати, в некоторых моделях калькуляторов предусмотрена вероятность возведения числа в квадрат даже при отсутствии особой кнопки. Следственно заблаговременно ознакомьтесь с инструкцией к определенному калькулятору. Изредка примеры «хитроумного» возведения в степень приведены на задней крышке либо на коробке калькулятора. Скажем, на многих калькуляторах для возведения числа в квадрат довольно нажать кнопки «х» и «=».

3. Для возведения в квадрат обычной дроби (состоящей из числителя и знаменателя), возведите в квадрат по отдельности числитель и знаменатель этой дроби. То есть воспользуйтесь дальнейшим правилом:(ч / з)? = ч? / з?, где ч – числитель дроби, з – знаменатель дроби.Пример: (3/4)? = 3?/4? = 9/16.

4. Если возводимая в квадрат дробь – смешанная (состоит из целой части и обычной дроби), то заранее приведите ее к обычному виду. То есть примените следующую формулу:(ц ч/з)? = ((ц*з+ч) / з)? = (ц*з+ч)? / з?, где ц – целая часть смешанной дроби.Пример: (3 2/5)? = ((3*5+2) / 5)? = (3*5+2)? / 5? = 17? / 5? = 289/25 = 11 14/25.

5. Если возводить в квадрат обычные (не десятичные) дроби доводится непрерывно, то воспользуйтесь программой MS Excel. Для этого введите в одну из клеток таблицы следующую формулу: =СТЕПЕНЬ(A2;2) где А2 – адрес ячейки, в которую будет вводиться возводимая в квадрат дробь .Дабы осведомить программе, что с вводимым числом нужно обращаться как с обычной дробь ю (т.е. не преобразовывать ее в десятичный вид), наберите перед дробь ю цифру «0» и знак «пробел». То есть для ввода, скажем, дроби 2/3 надобно ввести: «0 2/3» (и нажать Enter). При этом в строке ввода отобразится десятичное представление введенной дроби. Значение и представление дроби непринужденно в клетке сохранится в начальном виде. Помимо того, при применении математических функций, доводами которых являются обычные дроби, итог также будет представлен в виде обычной дроби. Следственно квадрат дроби 2/3 будет представлен как 4/9.

Способ выделения квадрата двучлена используется при облегчении массивных выражений, а также для решения квадратных уравнений. На практике его традиционно комбинируют с другими приемами, включая разложение на множители, группировку и пр.

Инструкция

1. Способ выделения полного квадрата двучлена основан на применении 2-х формул сокращенного умножения многочленов. Эти формулы являются частными случаями Бинома Ньютона для 2-й степени и разрешают упростить желанное выражение так, дабы дозволено было провести дальнейшее сокращение либо разложение на множители:(m + n)² = m² + 2·m·n + n²;(m – n)² = m² – 2·m·n + n².

2. Согласно этому способу из начального многочлена требуется выделить квадраты 2-х одночленов и сумму/разность их двойного произведения. Использование этого способа имеет толк, если старшая степень слагаемых не поменьше 2. Представим, дано задание разложить на множители с понижением степени следующее выражение:4·y^4 + z^4

3. Для решения задачи необходимо воспользоваться способом выделения полного квадрата. Выходит, выражение состоит из 2-х одночленов с переменными четной степени. Следственно, дозволено обозначить всякий из них через m и n:m = 2·y²; n = z².

4. Сейчас надобно привести начальное выражение к виду (m + n)². В нем теснее присутствуют квадраты этих слагаемых, но не хватает двойного произведения. Необходимо добавить его неестественно, а потом вычесть:(2·y²)² + 2·2·y²·z² + (z²)² – 2·2·y² ·z² = (2·y² + z²)² – 4·y²·z².

5. В получившемся выражении дозволено увидеть формулу разности квадратов:(2·y² + z²)² – (2·y·z)² = (2·y² + z² – 2·y·z)· (2·y² + z² + 2·y·z).

6. Выходит, способ состоит из 2-х этапов: выделение одночленов полного квадрата m и n, прибавление и вычитание их двойного произведения. Способ выделения полного квадрата двучлена может использоваться не только самосильно, но и в комбинации с другими способами: вынесения за скобки всеобщего множителя, замена переменной, группировки слагаемых и пр.

7. Пример 2.Выделите полный квадрат в выражении:4·y² + 2·y·z + z².Решение.4·y² + 2·y·z + z² = = (2·y)² + 2·2·y·z + (z) ² – 2·y·z = (2·y + z)² – 2·y·z.

8. Способ используется при нахождении корней квадратного уравнения. Левая часть уравнения представляет собой трехчлен вида a·y? + b·y + c, где a, b и c – какие-то числа, причем a ? 0. a·y? + b·y + c = a·(y? + (b/a)·y) + c = a·(y? + 2·(b/(2·a))·y) + c = a·(y? + 2·(b/(2·a))·y + b?/(4·a?)) + c – b?/(4·a) = a·(y + b/(2·a)) ? – (b? – 4·a·c)/(4·a).

9. Эти расчеты приводят к представлению дискриминанта, тот, что равен (b? – 4·a·c)/(4·a), а корни уравнения равны:y_1,2 = ±(b/(2 a)) ± ? ((b? – 4·a·c)/(4·a)).

Операция возведения в степень является «бинарной», то есть имеет два непременных входных параметра и один выходной. Один из начальных параметров именуется показателем степени и определяет число раз, которое операция умножения должна быть применена ко второму параметру – основанию. Основание может быть как правильным, так и негативным числом .

Инструкция

1. Используйте при возведении в степень негативного числа обыкновенные для этой операции правила. Как и для позитивных чисел, возведение в степень обозначает умножение начальной величины на саму себя число раз, на единицу меньшее показателя степени. Скажем, дабы построить в четвертую степень число -2, его надобно трижды умножить на себя: -2?=-2*(-2)*(-2)*(-2)=16.

2. Умножение 2-х негативных чисел неизменно дает позитивное значение, а итогом этой операции для величин с различными знаками будет число негативное. Из этого дозволено сделать итог, что при возведении негативных значений в степень с четным показателем неизменно должно получаться число позитивное, а при нечетных показателях итог неизменно будет поменьше нуля. Используйте это качество для проверки произведенных расчетов. Скажем, -2 в пятой степени должно быть числом негативным -2?=-2*(-2)*(-2)*(-2)*(-2)=-32, а -2 в шестой – позитивным -2?=-2*(-2)*(-2)*(-2)*(-2)*(-2)=64.

3. При возведении негативного числа в степень показатель может быть приведен в формате обычной дроби – скажем, -64 в степени?. Такой показатель обозначает, что начальную величину следует построить в степень, равную числителю дроби, и извлечь из нее корень степени, равной знаменателю. Одна часть этой операции рассмотрена в предыдущих шагах, а тут вам следует обратить внимание на иную.

4. Извлечение корня – нечетная функция, то есть для негативных вещественных чисел она может использоваться только при нечетном показателе степени. При четном эта функция значения не имеет. Следственно, если в условиях задачи требуется построить негативное число в дробную степень с четным знаменателем, то задача решения не имеет. В остальных случая проделайте вначале операции из первых 2-х шагов, применяя в качестве показателя степени числитель дроби, а после этого извлеките корень со степенью знаменателя.

Степенной формат записи числа – это сокращенная форма записи операции умножения основания на само себя. С числом, представленным в такой форме, дозволено осуществлять те же операции, что и с всякими другими числами, в том числе и возводить их в степень . Скажем, дозволено построить в произвольную степень квадрат числа и приобретение итога на современном ярусе становления техники не составит какой-нибудь сложности.

Вам понадобится

  • Доступ в интернет либо калькулятор Windows.

Инструкция

1. Для возведения квадрат а в степень используйте всеобщее правило возведения в степень числа, теснее имеющего степенной показатель. При такой операции показатели перемножаются, а основание остается бывшим. Если основание обозначить как x, а начальный и добавочный показатели степени – как a и b, записать это правило в всеобщем виде дозволено так: (x?)?=x??.

2. Для утилитарных расчетов проще каждого воспользоваться поисковой системой Google – в нее встроен дюже легкой в применении калькулятор. Скажем, если требуется построить в пятую степень квадрат числа 6, перейдите на основную страницу поисковика и введите соответствующий запрос. Сформулировать его дозволено так: (6^2)^5 – тут значок ^ обозначает степень . А дозволено самосильно рассчитать результирующий показатель степени в соответствии с формулой из предыдущего шага и сформулировать запрос так: 6^10. Либо доверить сделать это Google, введя такой запрос: 6^(2*5). Для всякого из этих вариантов калькулятор поисковика вернет идентичный результат: 60 466 176.

3. При отсутствии доступа в интернет вычислитель Google дозволено заменить, скажем, встроенным калькулятором Windows. Если вы используете версии Seven либо Vista этой ОС, раскройте основное меню системы и наберите каждого две буквы: «ка». Система отобразит в основном меню все программы и файлы, которые у нее ассоциируется с этим сочетанием. В первой строке будет ссылка «Калькулятор» – кликните по ней мышкой, и приложение будет запущено.

4. Нажмите сочетание клавиш Alt + 2, дабы в интерфейсе приложения возникла кнопка с функцией возведения в произвольную степень . После этого введите основание – в примере из второго шага это число 6 – и кликните вначале по кнопке x?, а после этого по кнопке x?. Введите показатель степени, в которую надобно построить квадрат – в использованном примере это число 5. Нажмите кнопку Enter, и калькулятор отобразит окончательный итог операции.

Видео по теме

Полезный совет
Дабы тренировка не была тоскливой, позовите на подмога друга. Пускай он пишет двузначное число, а вы - вывод возведения этого числа в квадрат. После этого меняйтесь местами.

Если умножить число само на себя, получится возведение в квадрат . Даже первоклассник знает, что «дважды два - четыре». Трехзначные, четырехзначные и т.д. числа лучше перемножать в столбик или на калькуляторе, а вот с двузначными справляйтесь без электронного помощника, умножая в уме.

Инструкция

Разложите любое двузначное число на составляющие, выделив количество единиц. В числе 96 количество единиц - 6. Поэтому можно записать: 96 = 90 + 6.

Возведите в квадрат первое из чисел: 90 * 90 = 8100.

Аналогично сделайте со вторым число м: 6 * 6 = 36

Перемножьте числа между собой и удвойте результат: 90 * 6 * 2 = 540 * 2 = 1080.

Сложите результаты второго, третьего и четвертого шагов: 8100 + 36 + 1080 = 9216. Это и есть результат возведения в квадрат числа 96. После некоторой тренировки сможете быстро делать шаги в уме, удивляя родителей и одноклассников. Пока не освоились, записывайте результаты каждого шага, чтобы не запутаться.

Для тренировки возведите в квадрат число 74 и проверьте себя на калькуляторе. Последовательность действий: 74 = 70 + 4, 70 * 70 = 4900, 4 * 4 = 16, 70 * 4 * 2 = 560, 4900 + 16 + 560 = 5476.

Возведите во вторую степень число 81. Ваши действия: 81 = 80 + 1, 80 * 80 = 6400, 1 * 1 = 1, 80 * 1 * 2 = 160, 6400 + 1 + 160 = 6561.

Запомните особый способ возведения в квадрат двузначных чисел, которые оканчиваются на цифру 5. Выделите количество десятков: в числе 75 их 7 штук.

Умножьте количество десятков на следующую цифру в число вом ряду: 7 * 8 = 56.

Припишите справа число 25: 5625 - результат возведения в квадрат числа 75.

Для тренировки возведите во вторую степень число 95. Оно оканчивается на цифру 5, поэтому последовательность действий: 9 * 10 = 90, 9025 - результат.

Научитесь возводить в квадрат отрицательные числа: -95 в квадрат е равно 9025, как в одиннадцатом шаге. Аналогично -74 в квадрат е равно 5476, как в шестом шаге. Это связано с тем, что при умножении двух отрицательных чисел всегда получается положительное число : -95 * -95 = 9025. Поэтому при возведении в квадрат можете просто не обращать внимания на знак «минус».

Полезный совет

Чтобы тренировка не была скучной, позовите на помощь друга. Пусть он пишет двузначное число, а вы - итог возведения этого числа в квадрат. Затем меняйтесь местами.



Вверх