Презентация - магнитное поле и его изображение. Индукция магнитного поля. Линии магнитной индукции. Магнитное поле Земли

Мы не можем увидеть магнитное поле, однако для лучшего понимания магнитных явлений важно научиться его изображать. В этом помогут магнитные стрелки. Каждая такая стрелка — это маленький постоянный магнит, который легко поворачивается в горизонтальной плоскости (рис. 2.1). О том, как графически изображают магнитное поле и какая физическая величина его характеризует, вы узнаете из этого параграфа.

Рис. 2.2. В магнитном поле магнитные стрелки ориентируются определенным образом: северный полюс стрелки указывает направление вектора индукции магнитного поля в данной точке

Изучаем силовую характеристику магнитного поля

Если заряженная частица движется в магнитном поле, то поле будет действовать на частицу с некоторой силой. Значение этой силы зависит от заряда частицы, направления и значения скорости ее движения, а также от того, насколько сильным является поле.

Силовой характеристикой магнитного поля является магнитная индукция.

Магнитная индукция (индукция магнитного поля) — это векторная физическая величина, характеризующая силовое действие магнитного поля.

Магнитную индукцию обозначают символом B.

Единица магнитной индукции в СИ — тесла; названа в честь сербского физика Николы Теслы (1856-1943):

За направление вектора магнитной индукции в данной точке магнитного поля принято направление, на которое указывает северный полюс магнитной стрелки, установленной в этой точке (рис. 2.2).

Обратите внимание! Направление силы, с которой магнитное поле действует на движущиеся заряженные частицы или на проводник с током, или на магнитную стрелку, не совпадает с направлением вектора магнитной индукции.

Магнитные линии:

Рис. 2.3. Линии магнитного поля полосового магнита

Вне магнита выходят из северного полюса магнита и входят в южный;

Всегда замкнуты (магнитное поле — это вихревое поле);

Наиболее густо расположены у полюсов магнита;

Никогда не пересекаются

Изображаем магнитное поле

На рис. 2.2 видим, как ориентируются магнитные стрелки в магнитном поле: их оси как будто образуют линии, а вектор магнитной индукции в каждой точке направлен вдоль касательной к линии, проходящей через эту точку.

С помощью магнитных линий графически изображают магнитные поля:

1) за направление линии магнитной индукции в данной точке принято направление вектора магнитной индукции;

Рис. 2.4. Цепочки железных опилок воспроизводят картину линий магнитной индукции магнитного поля подковообразного магнита

2) чем больше модуль магнитной индукции, тем ближе друг к другу чертят магнитные линии.

Рассмотрев графическое изображение магнитного поля полосового магнита, можно сделать некоторые выводы (см. на рис. 2.3).

Заметим, что данные выводы справедливы для магнитных линий любого магнита.

Какое направление имеют магнитные линии внутри полосового магнита?


Картину магнитных линий можно воспроизвести с помощью железных опилок.

Возьмем подковообразный магнит, положим на него пластинку из оргстекла и через ситечко будем насыпать на пластинку железные опилки. В магнитном поле каждый кусочек железа намагнитится и превратится в маленькую «магнитную стрелку». Импровизированные «стрелки» сориентируются вдоль магнитных линий магнитного поля магнита (рис. 2.4).

Изобразите картину магнитных линий магнитного поля подковообразного магнита.

Узнаём об однородном магнитном поле

Магнитное поле в некоторой части пространства называют однородным, если в каждой его точке векторы магнитной индукции одинаковы как по модулю, так и по направлению (рис. 2.5).

На участках, где магнитное поле однородно, линии магнитной индукции параллельны и расположены на одинаковом расстоянии друг от друга (рис. 2.5, 2.6). Магнитные линии однородного магнитного поля, направленные к нам, принято изображать точками (рис. 2.7, а) — мы как будто видим «острия стрел», летящих к нам. Если магнитные линии направлены от нас, то их изображают крестиками — мы как будто видим «оперения стрел», летящих от нас (рис. 2.7, б).

В большинстве случаев мы имеем дело с неоднородным магнитным полем, — полем, в разных точках которого векторы магнитной индукции имеют разные значения и направления. Магнитные линии такого поля искривлены, а их плотность разная.

Рис. 2.6. Магнитное поле внутри полосового магнита (а) и между двумя магнитами, обращенными друг к другу разноименными полюсами (б), можно считать однородным

Изучаем магнитное поле Земли

Для изучения земного магнетизма Вильям Гильберт изготовил постоянный магнит в виде шара (модель Земли). Расположив на шаре компас, он заметил, что стрелка компаса ведет себя так же, как на поверхности Земли.

Эксперименты позволили ученому предположить, что Земля — это огромный магнит, а на севере нашей планеты расположен ее южный магнитный полюс. Дальнейшие исследования подтвердили гипотезу В. Гильберта.

На рис. 2.8 изображена картина линий магнитной индукции магнитного поля Земли.

рис. 2.7. Изображение линий магнитной индукции однородного магнитного поля, которые перпендикулярны плоскости рисунка и направлены к нам (а); направлены от нас (б)

Представьте, что вы идете к Северному полюсу, двигаясь точно в том направлении, на которое указывает стрелка компаса. Достигнете ли вы места назначения?

Линии магнитной индукции магнитного поля Земли не параллельны ее поверхности. Если закрепить магнитную стрелку в карданном подвесе, то есть так, чтобы она могла свободно вращаться как вокруг горизонтальной, так

Рис. 2.8. Схема расположения магнитных линий магнитного поля планеты Земля

и вокруг вертикальной осей, стрелка установится под углом к поверхности Земли (рис. 2.9).

Как будет расположена магнитная стрелка в устройстве на рис. 2.9 вблизи северного магнитного полюса Земли? вблизи южного магнитного полюса Земли?

Магнитное поле Земли издавна помогало ориентироваться путешественникам, морякам, военным и не только им. Доказано, что рыбы, морские млекопитающие и птицы во время своих миграций ориентируются по магнитному полю Земли. Так же ориентируются, ища путь домой, и некоторые животные, например кошки.

Узнаём о магнитных бурях

Исследования показали, что в любой местности магнитное поле Земли периодически, каждые сутки, изменяется. Кроме того, наблюдаются небольшие ежегодные изменения магнитного поля Земли. Случаются, однако, и резкие его изменения. Сильные возмущения магнитного поля Земли, которые охватывают всю планету и продолжаются от одного до нескольких дней, называют магнитными бурями. Здоровые люди их практически не ощущают, а вот у тех, кто имеет сердечно-сосудистые заболевания и заболевания нервной системы, магнитные бури вызывают ухудшение самочувствия.

Магнитное поле Земли — своеобразный «щит», который защищает нашу планету от летящих из космоса, в основном от Солнца («солнечный ветер»), заряженных частиц. Вблизи магнитных полюсов потоки частиц подлетают довольно близко к атмосфере Земли. При возрастании солнечной активности космические частицы попадают в верхние слои атмосферы и ионизируют молекулы газа — на Земле наблюдаются полярные сияния (рис. 2.10).

Подводим итоги

Магнитная индукция В — это векторная физическая величина, характеризующая силовое действие магнитного поля. Направление вектора магнитной индукции совпадает с направлением, на которое указывает северный полюс магнитной стрелки. Единица магнитной индукции в СИ — тесла (Тл).

Условные направленные линии, в каждой точке которых касательная совпадает с линией, вдоль которой направлен вектор магнитной индукции, называют линиями магнитной индукции или магнитными линиями.

Линии магнитной индукции всегда замкнуты, вне магнита они выходят из северного полюса магнита и входят в южный, гуще расположены в тех областях магнитного поля, где модуль магнитной индукции больше.

Планета Земля имеет магнитное поле. Вблизи северного географического полюса Земли расположен ее южный магнитный полюс, вблизи южного географического полюса — северный магнитный полюс.

Контрольные вопросы

1. Дайте определение магнитной индукции. 2. Как направлен вектор магнитной индукции? 3. Какова единица магнитной индукции в СИ? В честь кого она названа? 4. Приведите определение линий магнитной индукции. 5. Какое направление принято за направление магнитных линий? 6. От чего зависит густота магнитных линий? 7. Какое магнитное поле называют однородным? 8. Докажите, что Земля имеет магнитное поле. 9. Как расположены магнитные полюсы Земли относительно географических? 10. Что такое магнитные бури? Как они влияют на человека?


Упражнение № 2

1. На рис. 1 изображены линии магнитной индукции на некотором участке магнитного поля. Для каждого случая а-в определите: 1) какое это поле — однородное или неоднородное; 2) направление вектора магнитной индукции в точках А и В поля; 3) в какой точке — А или В — магнитная индукция поля больше.

2. Почему стальная оконная решетка может со временем намагнититься?

3. На рис. 2 изображены линии магнитного поля, созданного двумя одинаковыми постоянными магнитами, обращенными друг к другу одноименными полюсами.

1) Существует ли магнитное поле в точке А?

2) Каково направление вектора магнитной индукции в точке В? в точке С?

3) В какой точке — А, В или С — магнитная индукция поля наибольшая?

4) Каково направление векторов магнитной индукции внутри магнитов?

4. Раньше во время экспедиций на Северный полюс возникали трудности в определении направления движения, ведь вблизи полюса обычные компасы почти не работали. Как вы думаете, почему?

5. Воспользуйтесь дополнительными источниками информации и выясните, какое значение имеет магнитное поле для жизни на нашей планете. Что произошло бы, если бы магнитное поле Земли вдруг исчезло?

6. Существуют участки земной поверхности, где магнитная индукция магнитного поля Земли значительно больше, чем в соседних областях. Воспользуйтесь дополнительными источниками информации и узнайте о магнитных аномалиях подробнее.

7. Объясните, почему любое незаряженное тело всегда притягивается к телу, имеющему электрический заряд.

Это материал учебника

Слайд 1

«Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле. Зависимость направления магнитных линий от направления тока в проводнике».

Слайд 2

Слово «магнит» произошло от названия города Магнессии (теперь это город Маниса в Турции).
«камень Геркулеса». «любящий камень», «мудрое железо», и «царственный камень»
Магнетизм известен с пятого века до нашей эры, но изучение его сущности продвигалось очень медленно. Впервые свойства магнита были описаны в 1269 году. В этом же году ввели понятие магнитного полюса.

Слайд 3

Слово МАГНИТ (от греческого. magnetic eitos) Минерал, состоящий из: FeO(31%) и Fe2O3 (69%). В нашей стране его добывают на Урале, в Курской области (Курская магнитная аномалия), В Карелии. Магнитный железняк – хрупкий минерал, его плотность 5000 кг/м*3

Слайд 4

Разнообразные искусственные магниты
Редкоземельные магниты – спеченные и магнитопласты

Слайд 5

Магнит обладает на разных участках различной притягивающей силой, на полюсах эта сила наиболее заметна.

Слайд 6

СВОЙСТВА ПОСТОЯННЫХ МАГНИТОВ
взаимно притягиваются или отталкиваются

Слайд 7

Земной шар – большой магнит.

Слайд 8

ГАНС ХРИСТИАН ЭРСТЕД (1777 – 1851)
Датский профессор химии, открыл существование магнитного поля вокруг проводника с током

Слайд 9

Опыт Эрстеда
если по проводнику протекает электрический ток, то расположенная рядом магнитная стрелка изменяет свою ориентацию в пространстве

Слайд 10

Опыт Эрстеда 1820 г.
О чем говорит отклонение магнитной стрелки при замыкании электрической цепи?
Вокруг проводника с током существует магнитное поле. На него – то и реагирует магнитная стрелка. Магнитное поле – особый вид материи. Оно не имеет ни цвета, ни вкуса, ни запаха.

Слайд 11

Условия существования магнитного поля
а) электрические заряды; б) наличие электрического тока

Слайд 12

Сделаем выводы.
Вокруг проводника с током (т.е. вокруг движущихся зарядов) существует магнитное поле. Оно действует на магнитную стрелку, отклоняя её. Электрический ток и магнитное поле неотделимы друг от друга. Источником возникновения магнитного поля является электрический ток. .

Слайд 13

Как можно обнаружить МП?
а) с помощью железных опилок. Попадая в МП, железные опилки намагничиваются и располагаются вдоль магнитных линий, подобно маленьким магнитным стрелкам; б) по действию на проводник с током. Попадая в МП вокруг проводника с током, магнитная стрелка начинает двигаться, т.к. со стороны МП на неё действует сила.

Слайд 14

Почему вокруг магнитов постоянно существует магнитное поле?
Компьютерная модель атома бериллия.
Внутри любого атома существуют молекулярные токи

Слайд 15

Изображение магнитного поля
Линии магнитного поля – воображаемые линии, вдоль которых ориентируются магнитные стрелки

Слайд 16

север N
юг S
Линии магнитного поля проводника с током направлены по концентрическим окружностям

Слайд 17

Расположение железных опилок вокруг полосового магнита

Слайд 18

Графическое изображение магнитных линий вокруг полосового магнита

Слайд 19

Расположение железных опилок вокруг прямого проводника с током
Магнитные линии магнитного поля тока представляют собой замкнутые кривые, охватывающие проводник Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитных линей магнитного поля.

Слайд 20

Расположение железных опилок вдоль магнитных силовых линий.

Слайд 21

Соленоид – проводник, имеющий вид спирали (катушка). «солен» - греч. «трубка»

Слайд 22

Магнитное поле катушки и постоянного магнита
Катушка с током, как и магнитная стрелка имеет 2 полюса – северный и южный. Магнитное действие катушки тем сильнее, чем больше витков в ней. При увеличении силы тока магнитное поле катушки усиливается.

Слайд 23

Магнитное поле
Неоднородное.
Однородное.
Магнитные линии искривлены их густота меняется от точки к точке.
Магнитные линии параллельны друг другу и расположены с одинаковой густотой (например, внутри постоянного магнита).

Слайд 24

Что нужно знать о магнитных линиях?
1.Магнитные линии – замкнутые кривые, поэтому МП называют вихревым. Это означает, что в природе не существует магнитных зарядов. 2.Чем гуще расположены магнитные линии, тем МП сильнее. 3.Если магнитные линии расположены параллельно друг другу с одинаковой густотой, то такое МП называют однородным. 4. Если магнитные линии искривлены – это значит, что сила, действующая на магнитную стрелку в разных точках МП, разная. Такое МП называют неоднородным.

Слайд 25

Определение направления магнитной линии
Способы определения направления магнитной линии
При помощи магнитной стрелки
По правилу буравчика (1 правило правой руки)
По 2 правилу правой руки

Слайд 26

Правило буравчика
Известно, что направление линий магнитного поля тока связано с направлением тока в проводнике. Эта связь может быть выражена простым правилом, которое называется правилом буравчика. Правило буравчика заключается в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока. С помощью правила буравчика по направлению тока можно определить направлений линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля – направление тока, создающего это поле.

Слайд 27

Правило буравчика (винта)
Если буравчик с правой нарезкой ввинчивать по направлению тока, то направление вращения рукоятки совпадет с направлением магнитного поля.

Слайд 28

Правило правой руки для прямого проводника с током
Если правую руку расположить так, чтобы большой палец был направлен по току, то остальные четыре пальца покажут направление линии магнитной индукции

Слайд 29

+
-
Определение направления линий магнитного поля прямого проводника с током (правило буравчика)

Слайд 30

Слайд 31

Определение направления магнитного поля, пронизывающего соленоид (2 правило правой руки)

Слайд 32

+
-
2 правило правой руки (для определения направления магнитного поля, пронизывающего соленоид)
Ладонь правой руки расположить так, чтобы четыре пальца были по направлению тока, текущего по виткам соленоида, тогда большой палец укажет на направление магнитного поля, пронизывающего соленоид.

Слайд 33

Какие утверждения являются верными?
А.В природе существуют электрические заряды. Б.В природе существуют магнитные заряды. В.В природе не существует электрических зарядов. Г.В природе не существует магнитных зарядов. а) А и Б, б) А и В, в) А и Г, г) Б, В и Г.

Слайд 34

Закончить фразу: «Вокруг проводника с током существует...
а) магнитное поле; б) электрическое поле; в) электрическое и магнитное поле.

Слайд 35

Какими бывают магнитные линии?
I
Северный полюс магнитной стрелки указывает направление магнитных линий с помощью которых изображается магнитное поле.
На что указывает северный полюс магнитной стрелки?

Слайд 36

Направление магнитных линий совпадает с … направлением магнитной стрелки.
a. Южным
b. Северным
c. Не связано с магнитной стрелкой

Слайд 37

На рисунке показана картина магнитных линий прямого тока. В какой точке магнитное поле самое сильное?
а) б) в) г)

Слайд 38

Определить направление тока по известному направлению магнитных линий.

Слайд 39

Слайд 40

Какой из вариантов соответствует схеме расположения магнитных линий вокруг прямолинейного проводника с током, расположенного перпендикулярно плоскости рисунка?
а) б) в) г) д)

Слайд 41

Сирано де Бержерак
Я изобрел шесть средств Подняться в мир планет! … Сесть на железный круг И, взяв большой магнит, Его забросить вверх высоко, Докуда будет видеть око; Он за собой железо приманит, - Вот средство верное! А лишь он вас притянет, Схватить его и бросить вверх опять, - Так поднимать он бесконечно станет! Возможно ли подобное космическое путешествие? Почему?

Слайд 45

Домашнее задание: §42-44. Упражнение 33,34,35.

Слайд 46

Влияние магнитных полей на организм человека и животных.
Все живые организмы, в том числе и человек, рождаются и развиваются в естественных условиях планеты Земля, которая создает вокруг себя постоянное магнитное поле - магнитосферу. Это поле играет очень существенную роль для всех биохимических процессов в организме. Основа лечебного эффекта магнитного поля - улучшение кровообращения и состояния кровеносных сосудов.

Слайд 47

Долго искали магнитный компас у почтового голубя, однако мозги птицы никак не реагировали на магнитные поля. Наконец компас обнаружили в... брюшной полости! Навигационные способности мигрирующих животных всегда поражали людей. Ведь какой-то компас приводит их к месту, расположенному за тысячи километров от места рожденья.

Слайд 48

Сенсационного результата первыми добились калифорнийские ученые, биологи в содружестве с физиками. Гелиобиологу Джозею Кришвингу с помощниками удалось обнаружить кристаллы магнитного железняка в мозгах человека. Кришвинг долго изучал в магнитных полях образцы тканей, полученных при посмертных вскрытиях, и пришел к выводу, что количества магнетика в мозговых оболочках как раз ровно столько, сколько необходимо для работы простейшего биологического компаса.

Слайд 49

Каждый из нас носит в голове самый настоящий компас, точнее, сразу несколько компасов с микроскопически малыми "стрелками". Однако умение пользоваться скрытым чувством, как мы видим, есть далеко не у каждого. Можно с полной ответственностью заявить, что человеку не следует терять самообладания в любой сложной ситуации. Для заблудившегося в пустыне, в океане, в горах или в лесу (что более актуально для нас) всегда имеется шанс найти верную дорогу к спасению.

При построении картины магнитного поля используются те же правила что и при построении картины электрического поля в электростатике.

Линии индукции магнитного поля (или напряжённости) есть силовые линии магнитного поля. Линия же, где магнитный потенциал постоянен, называется эквипотенциальной.

Если в магнитное поле внести ферромагнитное тело, то силовые линии будут входить в него под углом 90  (т.е. поле искажается). Если же вносится не ферромагнитное тело, то искажения поля не происходит.

Аналогия электростатического (электрического) и магнитного полей

Существует два типа соответствий.

1) Одинаковое распределение линейных зарядов в электростатическом поле и линейных токов в магнитном поле.

В этом случае картины полей подобны, но силовые линии в электростатическом поле – это эквипотенциальные в магнитном поле и наоборот, то есть картина поля повёрнута на угол , меняется смысл линий.

2) Одинаковая форма граничных эквипотенциальных поверхностей в обоих полях. В этом случае картины полей полностью подобны.

Физическая природа полей различна, электростатическое поле создаётся зарядами, магнитное поле создаётся током, то есть в магнитном поле нет понятия магнитного заряда (
, величина, условно введенная).

Индуктивность

Для контуров (катушек), у которых магнитная проницаемость
и не зависит от напряженности магнитного поля, потокосцепление пропорционально току

, где

- коэффициент пропорциональности, называемый индуктивностью;

- электрический ток.

Потокосцепление равно:

, где

Ф – магнитный поток;

w – число витков.

Из выше приведённых формул следует:

Индуктивность зависит от геометрических размеров контура, числа витков, свойств среды, но не зависит от величины тока, протекающего по катушке.

Методика определения индуктивности :

    Условно считаем известным ток в катушке.

    Через известный ток выражаем магнитный поток.

    Магнитный поток подставляем в формулу индуктивности, где неизвестные токи сокращаются.

Методика расчета индуктивности аналогична методике расчета емкости

Пример: Определить индуктивность катушки, равномерно намотанной на сердечник прямоугольного сечения, внутренний радиус которого R 1 , наружный R 2 , высота h, число витков

По закону полного тока определяется Н:

Поток через полоску

Полный поток:

Потокосцепление равно:

Эдс самоиндукции и взаимоиндукции

ЭДС самоиндукции пропорциональна скорости изменения тока в этой катушке

- ЭДС самоиндукции.

Явление наведения ЭДС в каком-либо контуре при изменении тока в другом контуре называется взаимоиндукцией, а наведённая ЭДС – ЭДС взаимоиндукции.

- ЭДС взаимоиндукции,

где, М- взаимная индуктивность.


Опыт Эрстеда 1820 г. О чем говорит отклонение магнитной стрелки при замыкании электрической цепи? Вокруг проводника с током существует магнитное поле. На него – то и реагирует магнитная стрелка. Источником магнитного поля являются движущиеся электрические заряды или токи.


Опыт Эрстеда 1820 г. О чем говорит тот факт, что магнитная стрелка повернулась на? Это означает, что направление тока в проводнике изменилось на противоположное.




Опыт Ампера 1820 г. Как объяснить тот факт, что проводники с током взаимодействуют между собой? Мы знаем, что магнитное поле действует на проводник с током. Поэтому явление взаимодействия токов можно объяснить так: электрический ток в первом проводнике порождает магнитное поле, которое действует на второй ток и наоборот...






Единица силы тока Если по двум параллельным проводникам длиной 1 м, расположенным на расстоянии 1 м друг от друга течет ток по 1 А, то они взаимодействуют с силой Н.


Единица силы тока 2 А Чему равна сила тока в проводниках, если они взаимодействуют с силой Н?


Что такое магнитное поле и каковы его свойства? 1.МП – это особая форма материи, которая существует независимо от нас и от наших знаний о нем. 2.МП порождается движущимися электрическими зарядами и обнаруживается по действию на движущиеся электрические заряды. 3.С удалением от источника МП оно ослабевает.






Свойства магнитных линий: 1.Магнитные линии – замкнутые кривые. О чем это говорит? Если Вы возьмете кусок магнита и разломите его на два кусочка, каждый кусочек опять будет иметь "северный" и "южный" полюс. Если Вы вновь разломите получившийся кусочек на две части, каждая часть опять будет иметь "северный" и "южный" полюс. Неважно, как малы будут образовавшиеся кусочки магнитов – каждый кусочек всегда будет иметь "северный" и "южный" полюс. Невозможно добиться, чтобы образовался магнитный монополь ("моно" означает один, монополь – один полюс). По крайней мере, такова современная точка зрения на данное явление. Это говорит о том, что в природе не существует магнитных зарядов. Магнитные полюса разделить нельзя.











2.Обнаружить магнитное поле можно по... А) по действию на любой проводник, Б) действию на проводник, по которому течет электрический ток, В) заряженный теннисный шарик, подвешенный на тонкой нерастяжимой нити, Г) на движущиеся электрические заряды. а) А и Б, б) А и В, в) Б и В, г) Б и Г.










7.Какие утверждения являются верными? А.В природе существуют электрические заряды. Б.В природе существуют магнитные заряды. В.В природе не существует электрических зарядов. Г.В природе не существует магнитных зарядов. а) А и Б, б) А и В, в) А и Г, г) Б, В и Г.






10.Два параллельных проводника длиной по 1 м, расположенные на расстоянии 1 м друг от друга при протекании по ним электрического тока, притягиваются с силой Н. Это значит, что по проводникам текут токи... а) противоположных направлений по 1 А, б) одного направления по 1 А, в) противоположных направлений по 0,5 А, г) одного направления по 0,5 А.


























23.Магнитная стрелка отклонится, если её разместить вблизи... А) вблизи потока электронов, Б) вблизи потока атомов водорода, В) вблизи потока отрицательных ионов, Г) вблизи потока положительных ионов, Д) вблизи потока ядер атома кислорода. а) все ответы верны, б) А, Б, В, и Г, в) Б, В, Г, г) Б, В, Г, Д












3. На рисунке изображено сечение проводника с током в точке А, электрический ток входит перпендикулярно в плоскость рисунка. Какое из представленных в точке М направлений соответствует направлению вектора В индукции магнитного поля тока в этой точке? а) 1, б) 2, в) 3, 4)








Проведем в магнитном поле ряд непрерывных линий так, чтобы эти линии всюду совпадали с направлением силы поля (с направлением магнитной индукции). Полученная картина может служить изображением магнитного поля.

Если перемещать вдоль линии магнитного поля маленькую, свободно подвешенную компасную стрелку, то ее ось всюду будет совпадать с близлежащим участком линии. На одной из линий рис. 2.13 изображены компасные стрелки в четырех положениях.

Рис. 2.13. Магнитное поле стержневого магнита

Рис. 2.14. Магиитное поле прямолинейного проводника с током. Сопоставьте с рис. 2.10

На рис. 2.13, 2.14 посредством линий изображены магнитные поля постоянного магнита и прямолинейного проводника с током. Стрелки на линиях показывают направление магнитного поля (то направление, которое указывал бы северный конец компасной стрелки).

Для того чтобы по рисунку можно было судить и о силе поля, условились проводить линии тем ближе одна к другой, чем сильнее поле.

Из рис. 2.13 видно, что самое сильное поле - непосредственно около полюсов магнита. Из рис. 2.14 видно, что поле тока сильнее всего около провода, а по мере удаления от него поле ослабевает.

В § 2.1 говорилось, что небольшие железные тела под влиянием магнита сами становятся магнитами (рис. 2.1, а).

Поэтому понятно, что если положить на доску постоянный магнит и посыпать доску железными опилками, то они расположатся так, как расположились бы маленькие компасные стрелки. Картины, получаемые посредством опилок, дают наглядное представление о поле.

На рис. 2.15 изображено магнитное поле катушки. Если свернуть провод спиралью, намотав его как катушку, то одинаково направленные поля отдельных витков сложатся друг с другом, усиливая поле внутри катушки.

Направление магнитной линии совпадает с осью катушки, и поле достигает там наибольшей величины. Поле внутри катушки приблизительно однородно, т. е. сила поля остается приблизительно одинаковой в различных точках. Одинаковыми будут и расстояния между соседними магнитными линиями, имеющими наибольшую плотность внутри катушки.

Рис. 2.15. Картина магнитного поля катушки



Вверх