Как разложить квадратный многочлен. Разложение квадратного трехчлена на множители с помощью теоремы виета

Квадратным трёхчленом называется многочлен вида ax^2 + bx + с, где x - переменная, а, b и с - некоторые числа, причем, а ≠ 0.

Чтобы разложить трехчлен на множители, нужно знать корни этого трехчлена. (далее пример на трехчлене 5х^2 + 3х- 2)

Заметим: значение квадратного трёхчлена 5х^2 + 3х - 2 зависит от значения х. Например: Если х = 0, то 5х^2 + 3х - 2 = -2

Если х = 2, то 5х^2 + 3х - 2 = 24

Если х = -1, то 5х^2 + 3х - 2 = 0

При х = -1 квадратный трёхчлен 5х^2 + 3х - 2 обращается в нуль, в этом случае число -1 называют корнем квадратного трёхчлена .

Как получить корень уравнения

Поясним, как мы получили корень этого уравнения. Для начала необходимо четко знать теорему и формулу, по которой мы будем работать:

“Если х1 и х2 – корни квадратного трехчлена ax^2 + bx + c, то ax^2 + bx + c = a(x - x1)(x - x2)”.

Х = (-b±√(b^2-4ac))/2a \

Это формула нахождения корней многочлена является самой примитивной формулой, решая по которой вы никогда не запутаетесь.

Выражение 5х^2 + 3х – 2.

1. Приравниваем к нулю: 5х^2 + 3х – 2 = 0

2. Находим корни квадратного уравнения, для этого подставляем значения в формулу (а – коэффициент при Х^2, b – коэффициент при Х, свободный член, то есть цифра без Х):

Первый корень находим со знаком плюс перед корнем квадратным:

Х1 = (-3 + √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 + √(9 -(-40)))/10 = (-3 + √(9+40))/10 = (-3 + √49)/10 = (-3 +7)/10 = 4/(10) = 0,4

Второй корень со знаком минус перед корнем квадратным:

X2 = (-3 - √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 - √(9- (-40)))/10 = (-3 - √(9+40))/10 = (-3 - √49)/10 = (-3 - 7)/10 = (-10)/(10) = -1

Вот мы и нашли корни квадратного трехчлена. Чтобы убедиться, что они верные, можно сделать проверку: сначала подставляем первый корень в уравнение, затем второй:

1) 5х^2 + 3x – 2 = 0

5 * 0,4^2 + 3*0,4 – 2 = 0

5 * 0,16 + 1,2 – 2 = 0

2) 5х^2 + 3x – 2 = 0

5 * (-1)^2 + 3 * (-1) – 2 = 0

5 * 1 + (-3) – 2 = 0

5 – 3 – 2 = 0

Если при подстановке всех корней уравнение обращается в ноль, значит уравнение решено верно.

3. Теперь воспользуемся формулой из теоремы: ax^2 + bx + c = a(x-x1)(x-x2), помним, что Х1 и Х2 – это корни квадратного уравнения. Итак: 5х^2 + 3x – 2 = 5 * (x - 0,4) * (x- (-1))

5х^2 + 3x– 2 = 5(x - 0,4)(x + 1)

4. Чтобы убедиться в правильности разложения можно просто перемножить скобки:

5(х - 0,4)(х + 1) = 5(х^2 + x - 0,4x - 0,4) = 5(x^2 + 0,6x – 0,4) = 5x^2 +3 – 2. Что подтверждает правильность решения.

Второй вариант нахождения корней квадратного трехчлена

Еще один вариант нахождения корней квадратного трехчлена - теорема обратная теореме Виетта. Здесь корни квадратного уравнения находятся по формулам: x1 + x2 = -(b) , х1 * х2 = с . Но важно понимать, что данной теоремой можно пользоваться только в том случае, если коэффициент а = 1, то есть число, стоящее перед х^2 = 1.

Например: x^2 – 2x +1 = 0, a = 1, b = - 2, c = 1.

Решаем: х1 + х2 = - (-2), х1 + х2 = 2

Теперь важно подумать, какие числа в произведении дают единицу? Естественно это 1 * 1 и -1 * (-1) . Из этих чисел выбираем те, которые соответствую выражению х1 + х2 = 2, конечно же - это 1 + 1. Вот мы и нашли корни уравнения: х1 = 1, х2 = 1. Это легко проверить, если подставить в выражение x^2 – 2x + 1 = 0.

Разложение многочленов для получения произведения иногда кажется запутанным. Но это не так сложно, если разобраться в процессе пошагово. В статье подробно рассказано, как разложить на множители квадратный трехчлен.

Многим непонятно, как разложить на множители квадратный трехчлен, и для чего это делается. Сначала может показаться, что это бесполезное занятие. Но в математике ничего не делается просто так. Преобразование нужно для упрощения выражения и удобства вычисления.

Многочлен, имеющий вид – ax²+bx+c, называется квадратным трехчленом. Слагаемое «a» должно быть отрицательным или положительным. На практике это выражение называется квадратным уравнением. Поэтому иногда говорят и по-другому: как разложить квадратное уравнение.

Интересно! Квадратным многочлен называют из-за самой его большой степени – квадрата. А трехчленом — из-за 3-х составных слагаемых.

Некоторые другие виды многочленов:

  • линейный двучлен (6x+8);
  • кубический четырехчлен (x³+4x²-2x+9).

Разложение квадратного трехчлена на множители

Сначала выражение приравнивается к нулю, затем нужно найти значения корней x1 и x2. Корней может не быть, может быть один или два корня. Наличие корней определяется по дискриминанту. Его формулу надо знать наизусть: D=b²-4ac.

Если результат D получается отрицательный, корней нет. Если положительный – корня два. Если в результате получился ноль – корень один. Корни тоже высчитываются по формуле.

Если при вычислении дискриминанта получается ноль, можно применять любую из формул. На практике формула просто сокращается: -b / 2a.

Формулы для разных значений дискриминанта различаются.

Если D положительный:

Если D равен нулю:

Онлайн калькуляторы

В интернете есть онлайн калькулятор. С его помощью можно выполнить разложение на множители. На некоторых ресурсах предоставляется возможность посмотреть решение пошагово. Такие сервисы помогают лучше понять тему, но нужно постараться хорошо вникнуть.

Полезное видео: Разложение квадратного трехчлена на множители

Примеры

Предлагаем просмотреть простые примеры, как разложить квадратное уравнение на множители.

Пример 1

Здесь наглядно показано, что в результате получится два x, потому что D положительный. Их и нужно подставить в формулу. Если корни получились отрицательные, знак в формуле меняется на противоположный.

Нам известна формула разложения квадратного трехчлена на множители: a(x-x1)(x-x2). Ставим значения в скобки: (x+3)(x+2/3). Перед слагаемым в степени нет числа. Это значит, что там единица, она опускается.

Пример 2

Этот пример наглядно показывает, как решать уравнение, имеющее один корень.

Подставляем получившееся значение:

Пример 3

Дано: 5x²+3x+7

Сначала вычислим дискриминант, как в предыдущих случаях.

D=9-4*5*7=9-140= -131.

Дискриминант отрицательный, значит, корней нет.

После получения результата стоит раскрыть скобки и проверить результат. Должен появиться исходный трехчлен.

Альтернативный способ решения

Некоторые люди так и не смогли подружиться с дискриминантом. Можно еще одним способом произвести разложение квадратного трехчлена на множители. Для удобства способ показан на примере.

Дано: x²+3x-10

Мы знаем, что должны получиться 2 скобки: (_)(_). Когда выражение имеет такой вид: x²+bx+c, в начале каждой скобки ставим x: (x_)(x_). Оставшиеся два числа – произведение, дающее «c», т. е. в этом случае -10. Узнать, какие это числа, можно только методом подбора. Подставленные числа должны соответствовать оставшемуся слагаемому.

К примеру, перемножение следующих чисел дает -10:

  • -1, 10;
  • -10, 1;
  • -5, 2;
  • -2, 5.
  1. (x-1)(x+10) = x2+10x-x-10 = x2+9x-10. Нет.
  2. (x-10)(x+1) = x2+x-10x-10 = x2-9x-10. Нет.
  3. (x-5)(x+2) = x2+2x-5x-10 = x2-3x-10. Нет.
  4. (x-2)(x+5) = x2+5x-2x-10 = x2+3x-10. Подходит.

Значит, преобразование выражения x2+3x-10 выглядит так: (x-2)(x+5).

Важно! Стоит внимательно следить за тем, чтобы не перепутать знаки.

Разложение сложного трехчлена

Если «a» больше единицы, начинаются сложности. Но все не так трудно, как кажется.

Чтобы выполнить разложение на множители, нужно сначала посмотреть, возможно ли что-нибудь вынести за скобку.

Например, дано выражение: 3x²+9x-30. Здесь выносится за скобку число 3:

3(x²+3x-10). В результате получается уже известный трехчлен. Ответ выглядит так: 3(x-2)(x+5)

Как раскладывать, если слагаемое, которое находится в квадрате отрицательное? В данном случае за скобку выносится число -1. К примеру: -x²-10x-8. После выражение будет выглядеть так:

Схема мало отличается от предыдущей. Есть лишь несколько новых моментов. Допустим, дано выражение: 2x²+7x+3. Ответ также записывается в 2-х скобках, которые нужно заполнить (_)(_). Во 2-ю скобку записывается x, а в 1-ю то, что осталось. Это выглядит так: (2x_)(x_). В остальном повторяется предыдущая схема.

Число 3 дают числа:

  • -1, -3;
  • -3, -1;
  • 3, 1;
  • 1, 3.

Решаем уравнения, подставляя данные числа. Подходит последний вариант. Значит, преобразование выражения 2x²+7x+3 выглядит так: (2x+1)(x+3).

Другие случаи

Преобразовать выражение получится не всегда. При втором способе решение уравнения не потребуется. Но возможность преобразования слагаемых в произведение проверяется только через дискриминант.

Стоит потренироваться решать квадратные уравнения, чтобы при использовании формул не возникало трудностей.

Полезное видео: разложение трехчлена на множители

Вывод

Пользоваться можно любым способом. Но лучше оба отработать до автоматизма. Также научиться хорошо решать квадратные уравнения и раскладывать многочлены на множители нужно тем, кто собирается связать свою жизнь с математикой. На этом строятся все следующие математические темы.

Пример 1.1


x 4 + x 3 - 6 x 2 .

Решение

Выносим x 2 за скобки:
.
2 + x - 6 = 0 :
.
Корни уравнения:
, .


.

Ответ

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Решение

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Ответ

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 - 2 x 4 + 10 x 3 .

Решение

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Ответ

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 - 20 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) .

;
.

Ответ

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) :

;

;
.

Ответ

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Решение

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;


;
.

Ответ

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

6
-6, -3, -2, -1, 1, 2, 3, 6 .
(-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
(-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
(-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
(-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
1 3 - 6·1 2 + 11·1 - 6 = 0 ;
2 3 - 6·2 2 + 11·2 - 6 = 0 ;
3 3 - 6·3 2 + 11·3 - 6 = 0 ;
6 3 - 6·6 2 + 11·6 - 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Ответ

Пример 3.2

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
-2, -1, 1, 2 .
Подставляем поочередно эти значения:
(-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
(-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид.

На данном уроке мы с вами научимся раскладывать квадратные трёхчлены на линейные множители. Для этого необходимо вспомнить теорему Виета и обратную ей. Данное умение поможет нам быстро и удобно раскладывать квадратные трёхчлены на линейные множители, а также упростит сокращение дробей, состоящих из выражений.

Итак вернёмся к квадратному уравнению , где .

То, что стоит у нас в левой части, называется квадратным трёхчленом.

Справедлива теорема: Если - корни квадратного трёхчлена, то справедливо тождество

Где - старший коэффициент, - корни уравнения.

Итак, мы имеем квадратное уравнение - квадратный трёхчлен, где корни квадратного уравнения также называются корнями квадратного трёхчлена. Поэтому если мы имеем корни квадратного трёхчлена, то этот трёхчлен раскладывается на линейные множители.

Доказательство:

Доказательство данного факта выполняется с помощью теоремы Виета, рассмотренной нами в предыдущих уроках.

Давайте вспомним, о чём говорит нам теорема Виета:

Если - корни квадратного трёхчлена, у которого , то .

Из данной теоремы вытекает следующее утверждение, что .

Мы видим, что, по теореме Виета, , т. е., подставив данные значения в формулу выше, мы получаем следующее выражение

что и требовалось доказать.

Вспомним, что мы доказали теорему, что если - корни квадратного трёхчлена, то справедливо разложение .

Теперь давайте вспомним пример квадратного уравнения , к которому с помощью теоремы Виета мы подбирали корни . Из этого факта мы можем получить следующее равенство благодаря доказанной теореме:

Теперь давайте проверим правильность данного факта простым раскрытием скобок:

Видим, что на множители мы разложили верно, и любой трёхчлен, если он имеет корни, может быть разложен по данной теореме на линейные множители по формуле

Однако давайте проверим, для любого ли уравнения возможно такое разложение на множители:

Возьмём, к примеру, уравнение . Для начала проверим знак дискриминанта

А мы помним, что для выполнения выученной нами теоремы D должен быть больше 0, поэтому в данном случае разложение на множители по изученной теореме невозможно.

Поэтому сформулируем новую теорему: если квадратный трёхчлен не имеет корней, то его нельзя разложить на линейные множители.

Итак, мы рассмотрели теорему Виета, возможность разложения квадратного трёхчлена на линейные множители, и теперь решим несколько задач.

Задача №1

В данной группе мы будем по факту решать задачу, обратную к поставленной. У нас было уравнение, и мы находили его корни, раскладывая на множители. Здесь мы будем действовать наоборот. Допустим, у нас есть корни квадратного уравнения

Обратная задача такова: составьте квадратное уравнение, чтобы были его корнями.

Для решения данной задачи существует 2 способа.

Поскольку - корни уравнения, то - это квадратное уравнение, корнями которого являются заданные числа. Теперь раскроем скобки и проверим:

Это был первый способ, по которому мы создали квадратное уравнение с заданными корнями, в котором нет каких-либо других корней, поскольку любое квадратное уравнение имеет не более двух корней.

Данный способ предполагает использование обратной теоремы Виета.

Если - корни уравнения, то они удовлетворяют условию, что .

Для приведённого квадратного уравнения , , т. е. в данном случае , а .

Таким образом, мы создали квадратное уравнение, которое имеет заданные корни.

Задача №2

Необходимо сократить дробь .

Мы имеем трёхчлен в числителе и трёхчлен в знаменателе, причём трёхчлены могут как раскладываться, так и не раскладываться на множители. Если же и числитель, и знаменатель раскладываются на множители, то среди них могут оказаться равные множители, которые можно сократить.

В первую очередь необходимо разложить на множители числитель .

Вначале необходимо проверить, можно ли разложить данное уравнении на множители, найдём дискриминант . Поскольку , то знак зависит от произведения ( должно быть меньше 0), в данном примере , т. е. заданное уравнение имеет корни.

Для решения используем теорему Виета:

В данном случае, поскольку мы имеем дело с корнями, то просто подобрать корни будет довольно сложно. Но мы видим, что коэффициенты уравновешены, т. е. если предположить, что , и подставить это значение в уравнение, то получается следующая система: , т. е. 5-5=0. Таким образом, мы подобрали один из корней данного квадратного уравнения.

Второй корень мы будем искать методом подставления уже известного в систему уравнений, к примеру, , т.е. .

Таким образом, мы нашли оба корня квадратного уравнения и можем подставить их значения в исходное уравнение, чтобы разложить его на множители:

Вспомним изначальную задачу, нам необходимо было сократить дробь .

Попробуем решить поставленную задачу, подставив вместо числителя .

Необходимо не забыть, что при этом знаменатель не может равняться 0, т. е. , .

Если данные условия будут выполняться, то мы сократили исходную дробь до вида .

Задача №3 (задача с параметром)

При каких значениях параметра сумма корней квадратного уравнения

Если корни данного уравнения существуют, то , вопрос: когда .



Вверх