Что значит буква п сумма. Математический знаки и символы

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык , составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I - обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

Группа I

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается - Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

А, В, С, D, ... , L, М, N, ...

1,2,3,4,...,12,13,14,...

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

а, b, с, d, ... , l, m, n, ...

Линии уровня обозначаются: h - горизонталь; f- фронталь.

Для прямых используются также следующие обозначения:

(АВ) - прямая, проходящая через точки А а В;

[АВ) - луч с началом в точке А;

[АВ] - отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

α, β, γ, δ,...,ζ,η,ν,...

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) - плоскость α определяется параллельными прямыми а и b;

β(d 1 d 2 gα) - поверхность β определяется направляющими d 1 и d 2 , образующей g и плоскостью параллелизма α.

5. Углы обозначаются:

∠ABC - угол с вершиной в точке В, а также ∠α°, ∠β°, ... , ∠φ°, ...

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

Величина угла АВС;

Величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками - ||.

Например:

|АВ| - расстояние между точками А и В (длина отрезка АВ);

|Аа| - расстояние от точки А до линии a;

|Аα| - расстояшие от точки А до поверхности α;

|аb| - расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π 1 и π 2 , где π 1 - горизонтальная плоскость проекций;

π 2 -фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π 3 , π 4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х - ось абсцисс; у - ось ординат; z - ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А", В", С", D", ... , L", М", N", горизонтальные проекции точек; А", В", С", D", ... , L", М", N", ... фронтальные проекции точек; a" , b" , c" , d" , ... , l", m" , n" , - горизонтальные проекции линий; а" ,b" , с" , d" , ... , l" , m" , n" , ... фронтальные проекции линий; α", β", γ", δ",...,ζ",η",ν",... горизонтальные проекции поверхностей; α", β", γ", δ",...,ζ",η",ν",... фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса 0α , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h 0α - горизонтальный след плоскости (поверхности) α;

f 0α - фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: H a - горизонтальный след прямой (линии) а;

F a - фронтальный след прямой (линии) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,..., n:

А 1 , А 2 , А 3 ,...,А n ;

a 1 , a 2 , a 3 ,...,a n ;

α 1 , α 2 , α 3 ,...,α n ;

Ф 1 , Ф 2 , Ф 3 ,...,Ф n и т. д.

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

A 0 , B 0 , С 0 , D 0 , ...

Аксонометрические проекции

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:

А 0 , В 0 , С 0 , D 0 , ...

1 0 , 2 0 , 3 0 , 4 0 , ...

a 0 , b 0 , c 0 , d 0 , ...

α 0 , β 0 , γ 0 , δ 0 , ...

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1:

А 1 0 , В 1 0 , С 1 0 , D 1 0 , ...

1 1 0 , 2 1 0 , 3 1 0 , 4 1 0 , ...

a 1 0 , b 1 0 , c 1 0 , d 1 0 , ...

α 1 0 , β 1 0 , γ 1 0 , δ 1 0 , ...

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Б. Символы, обозначающие отношения между геометрическими фигурами
№ по пор. Обозначение Содержание Пример символической записи
1 Совпадают (АВ)≡(CD) - прямая, проходящая через точки А и В,
совпадает с прямой, проходящей через точки С и D
2 Конгруентны ∠ABC≅∠MNK - угол АВС конгруентен углу MNK
3 Подобны ΔАВС∼ΔMNK - треугольники АВС и MNK подобны
4 || Параллельны α||β - плоскость α параллельна плоскости β
5 Перпендикулярны а⊥b - прямые а и b перпендикулярны
6 Скрещиваются с d - прямые с и d скрещиваются
7 Касательные t l - прямая t является касательной к линии l.
βα - плоскость β касательная к поверхности α
8 Отображаются Ф 1 →Ф 2 - фигура Ф 1 отображается на фигуру Ф 2
9 S Центр проецирования.
Если центр проецирования несобственная точка,
то его положение обозначается стрелкой,
указывающей направление проецирования
-
10 s Направление проецирования -
11 P Параллельное проецирование р s α Параллельное проецирование - параллельное проецирование
на плоскость α в направлении s

В. Обозначения теоретико-множественные
№ по пор. Обозначение Содержание Пример символической записи Пример символической записи в геометрии
1 M,N Множества - -
2 A,B,C,... Элементы множества - -
3 { ... } Состоит из... Ф{A, B, C,... } Ф{A, B, C,... } - фигура Ф состоит из точек А, В,С, ...
4 Пустое множество L - ∅ - множество L пустое (не содержит элементов) -
5 Принадлежит, является элементом 2∈N (где N - множество натуральных чисел) -
число 2 принадлежит множеству N
А ∈ а - точка А принадлежит прямой а
(точка А лежит на прямой а)
6 Включает, cодержит N⊂М - множество N является частью (подмножеством) множества
М всех рациональных чисел
а⊂α - прямая а принадлежит плоскости α (понимается в смысле:
множество точек прямой а является подмножеством точек плоскости α)
7 Объединение С = A U В - множество С есть объединение множеств
A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5}
ABCD = ∪ [ВС] ∪ - ломаная линия, ABCD есть
объединение отрезков [АВ], [ВС],
8 Пересечение множеств М=К∩L - множество М есть пересечение множеств К и L
(содержит в себе элементы, принадлежащие как множеству К, так и множеству L).
М ∩ N = ∅- пересечение множеств М и N есть пустое множество
(множества М и N не имеют общих элементов)
а = α ∩ β - прямая а есть пересечение
плоскостей α и β
а ∩ b = ∅ - прямые а и b не пересекаются
(не имеют общих точек)

Группа II СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ
№ по пор. Обозначение Содержание Пример символической записи
1 Конъюнкция предложений; соответствует союзу "и".
Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия),
состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β
2 Дизъюнкция предложений; соответствует союзу "или". Предложение (p∨q)
истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба).
-
3 Импликация - логическое следствие. Предложение р⇒q означает: "если р, то и q" (а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой
4 Предложение (р⇔q) понимается в смысле: "если р, то и q; если q, то и р" А∈α⇔А∈l⊂α.
Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости.
Справедливо также и обратное утверждение: если точка принадлежит некоторой линии,
принадлежащей плоскости, то она принадлежит и самой плоскости
5 Квантор общности, читается: для всякого, для всех, для любого.
Выражение ∀(x)P(x) означает: "для всякого x: имеет место свойство Р(х) "
∀(ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов
при вершинах равна 180°
6 Квантор существования, читается: существует.
Выражение ∃(х)P(х) означает: "существует х, обладающее свойством Р(х)"
(∀α)(∃a).Для любой плоскости α существует прямая а, не принадлежащая плоскости α
и параллельная плоскости α
7 ∃1 Квантор единственности существования, читается: существует единственное
(-я, -й)... Выражение ∃1(x)(Рх) означает: "существует единственное (только одно) х,
обладающее свойством Рх"
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a,
проходящая через эти точки.
8 (Px) Отрицание высказывания P(x) аb(∃α )(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их
9 \ Отрицание знака
≠ -отрезок [АВ] не равен отрезку .а?b - линия а не параллельна линии b

    В абстрактной алгебре повсеместно используются символы для упрощения и сокращения текста, а также стандартные обозначения для некоторых групп. Ниже приведён список наиболее часто встречающихся алгебраических обозначений, соответствующие команды в … Википедия

    Математические обозначения это символы, используемые для компактной записи математических уравнений и формул. Помимо цифр и букв различных алфавитов (латинского, в том числе в готическом начертании, греческого и еврейского),… … Википедия

    Статья содержит список общеупотребительных аббревиатур математических функций, операторов и др. математических терминов. Содержание 1 Аббревиатуры 1.1 Латиница 1.2 Греческий алфавит … Википедия

    Юникод, или Уникод (англ. Unicode) стандарт кодирования символов, позволяющий представить знаки практически всех письменных языков. Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium,… … Википедия

    Список используемых в математике специфических символов можно увидеть в статье Таблица математических символов Математические обозначения («язык математики») сложная графическая система обозначений, служащая для изложения абстрактных… … Википедия

    У этого термина существуют и другие значения, см. Плюс минус (значения). ± ∓ Знак плюс минус (±) математический символ, который ставится перед некоторым выражением и означает, что значение этого выражения может быть как положительным, так и … Википедия

    Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    Или математические символы знаки, которые символизируют определённые математические действия со своими аргументами. К самым распространённым относятся: Плюс: + Минус: , − Знак умножения: ×, ∙ Знак деления: :, ∕, ÷ Знак возведения в… … Википедия

    Знаки операций или математические символы знаки, которые символизируют определённые математические действия со своими аргументами. К самым распространённым относятся: Плюс: + Минус: , − Знак умножения: ×, ∙ Знак деления: :, ∕, ÷ Знак возведения… … Википедия

«Символы не являются только записью мыслей,
средством её изображения и закрепления, -
нет, они воздействуют на самую мысль,
они… направляют её, и бывает достаточно
переместить их на бумаге… для того, чтобы
безошибочно достигнуть новых истин».

Л.Карно

Математические знаки служат в первую очередь для точной (однозначно определённой) записи математических понятий и предложений. Их совокупность в реальных условиях их применения математиками составляет то, что называется, математическим языком.

Математические знаки позволяют записывать в компактной форме предложения, громоздко выраженные на обычном языке. Это облегчает их запоминание.

Прежде чем использовать в рассуждениях те или иные знаки, математик старается сказать, что каждый из них обозначает. Иначе его могут не понять.
Но математики не всегда могут сказать сразу, что отражает тот или иной символ, введённый ими для какой-либо математической теории. Например, сотни лет математики оперировали отрицательными и комплексными числами, однако объективный смысл этих чисел и действие с ними удалось раскрыть лишь в конце XVIII и в начале XIX века.

1. Символизм математических кванторов

Подобно обычному языку, язык математических знаков позволяет обмениваться установленными математическими истинами, но являясь лишь вспомогательным средством, присоединяемым к обычному языку и без него существовать, не может.

Математическое определение:

На обычном языке:

Пределом функции F (x) в некоторой точке X0 называется постоянное число А, такое что для произвольного числа Е>0 существует такое положительное d(E), что из условия |X - X 0 |

Запись в кванторах (на математическом языке)

2. Символизм математических знаков и геометрических фигур.

1) Бесконечность — концепция, используемая в математике, философии и естественных науках. Бесконечность какого-то понятия или атрибута некоторого объекта означает невозможность указать для него границы или количественную меру. Термин бесконечность соответствует нескольким различным понятиям, в зависимости от области применения, будь то математика, физика, философия, теология или повседневная жизнь. В математике не существует одного понятия бесконечности, она наделяется особыми свойствами в каждом разделе. Более того, эти различные «бесконечности» не взаимозаменяемы. К примеру, теория множеств подразумевает разные бесконечности, причём одна может быть больше другой. Скажем, количество целых чисел бесконечно большое (оно называется счётным). Чтобы обобщить понятие количества элементов для бесконечных множеств, в математике вводится понятие мощности множества. При этом не существует одной «бесконечной» мощности. Например, мощность множества действительных чисел больше мощности целых чисел, потому что между этими множествами нельзя построить взаимно-однозначное соответствие, а целые числа включены в действительные. Таким образом, в этом случае одно кардинальное число (равно мощности множества) «бесконечнее» другого. Основоположником этих понятий был немецкий математик Георг Кантор. В математическом анализе ко множеству действительных чисел добавляются два символа, плюс и минус бесконечность, применяющиеся для определения граничных значений и сходимости. Нужно отметить, что в этом случае речь об «осязаемой» бесконечности не идёт, так как любое утверждение, содержащее этот символ, можно записать, используя только конечные числа и кванторы. Эти символы (как и многие другие) были введены для сокращения записи более длинных выражений. Бесконечность также неразрывно связана с обозначением бесконечно малого, к примеру, ещё Аристотель сказал:
«… всегда возможно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет предела; поэтому бесконечность потенциальна, никогда не действительна, и какое бы число делений не задали, всегда потенциально можно поделить этот отрезок на еще большее число». Заметим, что Аристотель внес большой вклад в осознание бесконечности, разделив её на потенциальную и актуальную, и вплотную подошел с этой стороны к основам математического анализа, также указав на пять источников представления о ней:

  • время,
  • разделение величин,
  • неиссякаемость творящей природы,
  • само понятие границы, толкающее за её пределы,
  • мышление, которое неостановимо.

Бесконечность в большинстве культур появилась как абстрактное количественное обозначение чего-то непостижимо большого, в применении к сущностям без пространственных или временных границ.
Далее бесконечность получила развитие в философии и теологии наравне с точными науками. К примеру, в теологии бесконечность Бога не столько даёт количественное определение, сколько означает неограниченность и непостижимость. В философии это атрибут пространства и времени.
Современная физика вплотную подходит к отрицаемой Аристотелем актуальности бесконечности — то есть доступности в реальном мире, а не только в абстрактном. Например, есть понятие сингулярности, тесно связанное с чёрными дырами и теорией большого взрыва: это точка в пространстве—времени, в которой масса в бесконечно малом объёме сосредоточена с бесконечной плотностью. Уже есть солидные косвенные доказательства существования чёрных дыр, хотя теория большого взрыва находится ещё в стадии разработки.

2) Круг — геометрическое место точек плоскости, расстояние от которых до заданной точки, называемой центром круга, не превышает заданного неотрицательного числа, называемого радиусом этого круга. Если радиус равен нулю, то круг вырождается в точку. Окружность — геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом.
Круг - символ Солнца, Луны. Один из самых распространённых символов. А также является символом бесконечности, вечности, совершенства.

3) Квадрат (ромб) - является символом комбинации и упорядочивания четырёх различных элементов, например четыре основных стихий или четырёх времён года. Символ числа 4, равенства, простоты, прямоты, истины, справедливости, мудрости, чести. Симметрия является той идеей посредством которой человек пытается постичь гармонию и с давних времён считалась символом прекрасного. Симметрией обладают так называемые “фигурные” стихи, текст которых имеет очертание ромба.
Стихотворение - ромб.

Мы -
Среди тьмы.
Глаз отдыхает.
Сумрак ночи живой.
Сердце жадно вздыхает,
Шепот звёзд долетает порой.
И лазурные чувства теснятся толпой.
Всё забылось в блеске росистом.
Поцелуем душистым!
Поскорее блесни!
Снова шепни,
Как тогда:
«Да!»

(Э.Мартов, 1894г)

4) Прямоугольник. Из всех геометрических форм это наиболее рациональная, наиболее надёжная и правильная фигура; эмпирически это объясняется тем фактом, что всегда и везде прямоугольник был излюбленной формой. С помощью него человек приспосабливал пространство или какой-либо предмет для непосредственного использования в своём быту, например: дом, комната, стол, кровать и т.п.

5) Пентагон - правильный пятиугольник в виде звезды символ вечности, совершенства, вселенной. Пентагон - амулет здоровья, знак на дверях для того, чтобы отогнать ведьм, эмблема Тота, Меркурия, кельтского Гавайна и др., символ пяти ран Иисуса Христа, благополучия, удачи у евреев, легендарный ключ Соломона; знак высокого положения в обществе у Японцев.

6) Правильный шестиугольник, гексагон - символ изобилия, красоты, гармонии, свободы, брака, символ числа 6, образ человека (две руки, две ноги, голова и туловище).

7) Крест - символ высших сакральных ценностей. Крест моделирует духовный аспект, восхождение духа, устремление к богу, к вечности. Крест - универсальный символ единства жизни и смерти.
Конечно, с этими утверждениями можно и не соглашаться.
Однако никто не будет отрицать, что любое изображение вызывает у человека ассоциации. Но проблема в том, что одни предметы, сюжеты или графические элементы вызывают у всех людей (вернее, у многих) одинаковые ассоциации, а другие - совершенно различные.

8) Треугольник - это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, соединяющих эти три точки.
Свойства треугольника как фигуры: прочность, неизменяемость.
Аксиома А1 стереометрии гласит: «Через 3 точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна!»
Чтобы проверить глубину понимания этого утверждения обычно задают задачу на засыпку: «На столе сидят три мухи, на трёх концах стола. В определённый момент они разлетаются по трём взаимно - перпендикулярным направлениям с одинаковой скоростью. Когда они снова окажутся в одной плоскости?». Ответом служит тот факт, что три точки всегда, в любой момент, определяют единственную плоскость. И именно 3 точки определяют треугольник, поэтому эта фигура в геометрии считается самой устойчивой и прочной.
Треугольник обычно относят к острой, «наступательной» фигуре, связанной с мужским началом. Равносторонний треугольник - мужской и солнечный знак, представляющий божество, огонь, жизнь, сердце, гору и восхождение, благополучие, гармонию и королевскую власть. Перевёрнутый треугольник - женский и лунный символ, олицетворяет воду, плодовитость, дождь, божественную милость.

9) Шестиконечная Звезда (Звезда Давида) - состоит из двух наложенных один на другой равносторонних треугольников. Одна из версий происхождения знака связывает его форму с формой цветка Белой лилии, имеющего шесть лепестков. Цветок традиционно располагался под храмовым светильником, таким образом, что священник зажигал огонь, как бы, в центре Маген Давида. В каббале два треугольника символизируют свойственную человеку дуальность: добро против зла, духовное против физического и так далее. Треугольник, направленный остриём вверх, символизирует наши добрые дела, которые поднимаются на небеса и вызывают поток благодати, нисходящий обратно в этот мир (что символизирует треугольник, направленный вниз). Иногда Звезду Давида называют Звездой Творца и связывают каждый из её шести концов с одним из дней недели, а центр - с субботой.
Государственные символы США также содержат Шестиконечную Звезду в разных видах, в частности есть она на Большой печати США и на денежных знаках. Звезда Давида изображена на гербах немецких городов Шер и Гербштедт, а так же украинских Тернополя и Конотопа. Три шестиконечные звезды изображены на флаге Бурунди и олицетворяют национальный девиз: «Единство. Работа. Прогресс».
В христианстве шестиконечная звезда - символ Христа, а именно соединения во Христе божественной и человеческой природы. Именно поэтому этот знак вписан в Православный Крест.

10) Пятиконечная Звезда - Основной отличительной эмблемой большевиков является красная пятиконечная звезда, официально установленная весной 1918 года. Первоначально большевистская пропаганда назвала её “ Марсовой звездой” (якобы принадлежащей античному богу войны - марсу), а затем стала заявлять, что “ Пять лучей звезды, означает союз трудящихся всех пяти континентов в борьбе против капитализма”. В действительности же пятиконечная звезда не имеет никакого отношения ни к воинствующему божеству Марсу, ни к международному пролетариату, это - древний оккультный знак (очевидно ближневосточного происхождения), называющийся “пентаграммой” или “Звездой Соломона”.
Правительству”, находящемуся под полным контролем масонства.
Весьма часто сатанисты рисуют пентаграмму двумя концами вверх, чтобы туда было легко вписать дьявольскую голову “Пентаграмма Бафомета”. Портрет “Пламенного революционера” помещён внутри “Пентаграммы Бафомета”, являющейся центральной частью композиции проектируемого в 1932 году особого чекистского ордена “ Феликса Дзержинского” (далее проект был отклонён Сталиным, глубоко ненавидящим “Железного Феликса”).

Отметим, что зачастую пентаграмма размещалась большевиками на красноармейском обмундировании, в военной технике, различных знаках и всевозможных атрибутах наглядной агитации чисто по-сатанински: двумя “рогами” вверх.
Марксистские планы “всемирной пролетарской революции” имели явно масонское происхождение, ряд виднейших марксистов состоял в масонстве. К ним относился Л.Троцкий, именно он и предложил сделать масонскую пентаграмму опознавательной эмблемой большевизма.
Интернациональные масонские ложи тайно оказывали большевикам всестороннюю поддержку, особенно финансовую.

3. Масонские знаки

Масоны

Девиз: «Свобода. Равенство. Братство».

Общественное движение свободных людей, которые на основе свободного выбора позволяют стать лучше, стать ближе к богу следственно, они признаны улучшить мир.
Масоны - соратники Творца, сподвижники общественного прогресса, против инерции, косности и невежества. Выдающиеся представители масонства - Карамзин Николай Михайлович, Суворов Александр Васильевич, Кутузов Михаил Илларионович, Пушкин Александр Сергеевич, Геббельс Иозеф.

Знаки

Лучезарное око (дельта) - знак древний, религиозный. Он говорит о том, что Бог надзирает над творениями своими. Изображением этого знака масоны спрашивали у Бога благословения на какие-либо грандиозные действия, на труды свои. Лучезарное око расположено на фронтоне Казанского Собора в Санкт-Петербурге.

Сочетание циркуля и угольника в масонском знаке.

Для непосвящённого - это орудие труда (каменщика), а для посвящённых - это способы познания мира и соотношения божественной премудрости и человеческого разума.
Угольник, как правило, снизу - это человеческое познание мира. С точки зрения масонства, человек приходит в мир, что познать божественный замысел. А для познания необходим инструментарий. Самая эффективная наука в познание мира - математика.
Угольник - древнейший математический инструмент, известный с незапамятных времён. Градуировка угольника - уже большой шаг вперёд в математическом инструментарии познания. Человек познаёт мир с помощью наук математика из них первейшая, но не единственная.
Однако угольник деревянный, и он вмещает то, что может вместить. Его нельзя раздвинуть. Если ты попытаешься его раздвинуть, чтобы он вмещал больше, - ты поломаешь его.
Так люди, пытающиеся познать всю бесконечность божественного замысла, либо умирают, либо сходят с ума. «Знай, свои границы!» - вот, что сообщает Миру этот знак. Будь ты даже Эйнштейн, Ньютон, Сахаров - величайшие умы человечества! - понимай, что ты ограничен временем, в котором ты рождён; в познании мира, языком, объёмом мозга, самыми разными человеческими ограничениями, жизнью твоего тела. Поэтому - да, познавай, но понимай, что ты никогда до конца не познаешь!
А циркуль? Циркуль есть божественная премудрость. Циркулем можно описать круг, а если раздвинуть ему ножки, то будет прямая. А в символических системах круг и прямая - две противоположности. Прямая обозначает человека, его начало и конец (как тире между двумя датами - рождения и смерти). Круг - символ божества, поскольку является совершенной фигурой. Они друг другу противостоят - божественная и человеческая фигуры. Человек не совершенен. Бог - совершенен во всём.

Для божественной премудрости нет невозможного, она может принять и вид человеческий (-) и вид божественный (0), всё может в себя вместить. Таким образом, человеческий разум постигает божественную премудрость, объемлет ее. В философии это утверждение является постулатом об абсолютной и относительной истине.
Люди всегда познают истину, но всегда относительную истину. А абсолютная истина ведома только Богу.
Познавай всё больше, осознавая, что не сможешь познать истину до конца - какие глубины мы находим в обыкновенном циркуле с угольником! Кто бы мог подумать!
Вот в чём прелесть и очарование масонской символики, в её огромной интеллектуальной глубине.
Начиная с эпохи Средневековья циркуль, как инструмент для вычерчивания безупречных кругов стал символом геометрии, космического порядка и планомерных действий. В это время часто рисовали Бога Саваофа в образе творца и архитектора Вселенной с циркулем в руках (Уильям Блейк ‘‘Великий Архитектор’’, 1794 г).

Шестиугольная Звезда (Вифлеема)

Буква G - обозначение бога (нем. - Got), великого геометра Вселенной.
Шестиугольная Звезда, означала Единство и Борьбу Противоположностей, борьбу Мужчины и Женщины, Добра и Зла, Света и Тьмы. Не может одно существовать без другого. Напряжение, которое возникает между этими противоположностями, создаёт мир в том виде, в каком мы его знаем.
Треугольник вверх означает - «Человек стремится к Богу». Треугольник вниз - «Божество нисходит к Человеку». В их соединении и существует наш мир, который и есть соединение Человеческого и Божественного. Буква G здесь означает, что Бог живёт в нашем мире. Он реально присутствует во всём, им сотворённом.

Заключение

Математические знаки служат в первую очередь для точной записи математических понятий и предложений. Их совокупность составляет то, что называется математическим языком.
Решающей силой развития математической символики является не “свободная воля” математиков, а требования практики, математических исследований. Именно реальные математические исследования помогают выяснить, какая система знаков наилучшим образом отображает структуру количественных и качественных отношений, в силу чего могут быть эффективным орудием их дальнейшего применения в символах и эмблемах.

Математические обозначения («язык математики ») - сложная графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет (по своей сложности и разнообразию) значительную долю неречевых знаковых систем , применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор.

Отметим, что математические обозначения, как правило, применяются совместно с письменной формой какого-то из естественных языков .

Помимо фундаментальной и прикладной математики, математические обозначения имеют широкое применение в физике , а также (в неполном своём объёме) в инженерии , информатике , экономике , да и вообще во всех областях человеческой деятельности, где применяются математические модели . Различия между собственно математическим и прикладным стилем обозначений будут оговорены по ходу текста.

Энциклопедичный YouTube

    1 / 5

    ✪ Знак / в математике

    ✪ Математика 3 класс. Таблица разрядов многозначных чисел

    ✪ Множества в математике

    ✪ Математика 19. Математические забавы - Шишкина школа

    Субтитры

    Привет! Это видео не о математике, скорее об этимологии и семиотике. Но уверен, вам понравится. Поехали! Вы вот в курсе, что поиск решения кубических уравнений в общем виде занял у математиков несколько столетий? Это отчасти почему? Потому что не было ясных символов для ясных мыслей, то ли дело наше время. Символов столько, что и запутаться можно. Но нас с вами не проведешь, давайте разбираться. Вот это - заглавная перевернутая буква А. Это на самом деле английская буква, числится первой в словах "all" и "any". По-русски этот символ, в зависимости от контекста, может читаться так: для любого, всякий, каждому, все и так далее. Такой иероглиф будем называть квантором всеобщности. А вот и еще один квантор, но уже существование. Английскую букву е отразили в Paint-е слева направо, намекая тем самым на заморский глагол "exist", по-нашему будем читать: существует, найдется, имеется и другим подобным образом. Восклицательный знак такому квантору существования добавит единственности. Если с этим понятно, двигаемся дальше. Неопределенные интегралы вам наверняка попадались в классе так одиннадцатом, я бы хотел напомнить, что это не просто какая-то первообразная, а совокупность всех первообразных подынтегральной функции. Так что не забывайте про С - константу интегрирования. Между делом, сам значок интеграла - это просто вытянутая буква s, отголосок латинского слова сумма. В этом как раз и есть геометрический смысл определенного интеграла: поиск площади фигуры под графиком суммированием бесконечно малых величин. Как по мне, это самое романтичное занятие в матанализе. А вот школьная геометрия полезнее всего тем, что приучает к логической строгости. К первому курсу у вас должно быть чёткое понимание, что такое следствие, что такое равносильность. Ну нельзя путаться в необходимости и достаточности, понимаете? Давайте даже попробуем копнуть чуть-чуть глубже. Если вы решили заняться высшей математикой, то я представляю, насколько у вас все плохо с личной жизнью, но именно поэтому вы наверняка согласитесь одолеть небольшое упражнение. Здесь три пункта, в каждом имеется левая и правая части, которую вам нужно связать одним из трех нарисованных символов. Пожалуйста, кликните паузу, попробуйте сами, а затем послушайте, что я вам скажу. Если x=-2, то |x|=2, а вот слева направо так фразу уже построить. Во втором пункте в левой и правой частях написано абсолютно одно и то же. А третий пункт можно прокомментировать так: каждый прямоугольник является параллелограммом, но не каждый параллелограмм является прямоугольником. Да, знаю, что вы уже не маленькие, но все же мои аплодисменты тем, кто справился с этим упражнением. Ну да ладно, хватит, давайте вспомним числовые множества. Натуральные числа используются при счете: 1, 2, 3, 4 и так далее. В природе -1 яблока не существует, но, кстати, целые числа позволяют говорить о таких вещах. Буква ℤ кричит нам о важной роли нуля, множество рациональных чисел обозначается буквой ℚ, и это неслучайно. В английском слово "quotient" означает "отношение". Кстати, если где-нибудь в Бруклине к вам подойдет афроамериканец и скажет: "Keep it real!", - можете быть уверены, перед вами математик, почитатель действительных чисел. Ну а вам стоит почитать что-нибудь о комплексных числах, будет полезней. Мы же сейчас сделаем откат, вернемся в первый класс самой что ни на есть обычной греческой школы. Короче говоря, помянем древний алфавит. Первая буква - альфа, затем бетта, этот крючок - гамма, потом дельта, после неё следует эпсилон и так далее, вплоть до последней буквы омега. Можете не сомневаться, что у греков есть и прописные буквы, но мы сейчас не будем о грустном. Мы лучше о веселом - о пределах. Но тут как раз никаких загадок и нет, сразу понятно, от какого слова появился математический символ. Ну а стало быть, мы можем перейти к финальной части видео. Пожалуйста, попробуйте озвучить определение предела числовой последовательности, которое сейчас написано перед вами. Кликайте скорее паузу и соображаете, и да будет вам счастье годовалого ребенка, узнавшего слово "мама". Если для любого эпсилон больше нуля найдется натуральное N, да такое, что для всех номеров числовой последовательности, больших N, выполнено неравенство |xₙ-a|<Ɛ (эпсилон), то тогда предел числовой последовательности xₙ , при n, стремящемся к бесконечности, равен числу a. Такие вот дела, ребята. Не беда, если вам не удалось прочесть это определение, главное в свое время его понять. Напоследок отмечу: множество тех, кто посмотрел этот ролик, но до сих пор не подписан на канал, не является пустым. Это меня очень печалит, так что во время финальной музыки покажу, как это исправить. Ну а остальным желаю мыслить критически, заниматься математикой! Счастливо! [Музыка / аплодиминнты]

Общие сведения

Система складывалась, наподобие естественных языков, исторически (см. история математических обозначений), и организована наподобие письменности естественных языков, заимствуя оттуда также многие символы (прежде всего, из латинского и греческого алфавитов). Символы, также как и в обычной письменности, изображаются контрастными линиями на равномерном фоне (чёрные на белой бумаге, светлые на тёмной доске, контрастные на мониторе и т. д.), и значение их определяется в первую очередь формой и взаимным расположением. Цвет во внимание не принимается и обычно не используется, но, при использовании букв , такие их характеристики как начертание и даже гарнитура , не влияющие на смысл в обычной письменности, в математических обозначениях могут играть смыслоразличающую роль.

Структура

Обыкновенные математические обозначения (в частности, так называемые математические формулы ) пишутся в общем в строку слева направо, однако не обязательно составляют последовательную строку символов. Отдельные блоки символов могут располагаться в верхней или нижней половине строки, даже в случае, когда символы не перекрываются вертикалями. Также, некоторые части располагаются целиком выше или ниже строки. С грамматической же стороны почти любую «формулу» можно считать иерархически организованной структурой типа дерева .

Стандартизация

Математические обозначения представляют систему в смысле взаимосвязи своих компонент, но, в целом, не составляют формальную систему (в понимании самой математики). Они, в сколь-нибудь сложном случае, не могут быть даже разобраны программно . Как и любой естественный язык, «язык математики» полон несогласованных обозначений, омографов , различных (в среде своих носителей) трактовок того, что́ считать правильным и т. п. Нет даже сколь-нибудь обозримого алфавита математических символов, и в частности оттого, что не всегда однозначно решается вопрос, считать ли два обозначения разными символами или же разными написаниями одного символа.

Некоторая часть математических обозначений (в основном, связанная с измерениями) стандартизована в ISO 31 -11, однако в целом стандартизация обозначений скорее отсутствует.

Элементы математических обозначений

Числа

При необходимости применить систему счисления с основанием , меньшим десяти, основание записывается в нижний индекс: 20003 8 . Системы счисления с основаниями, бо́льшими десяти, в общепринятой математической записи не применяются (хотя, разумеется, изучаются самой наукой), поскольку для них не хватает цифр. В связи с развитием информатики , стала актуальной шестнадцатеричная система счисления , в которой цифры от 10 до 15 обозначаются первыми шестью латинскими буквами от A до F. Для обозначения таких чисел в информатике используется несколько разных подходов, но в математику они не перенесены.

Надстрочные и подстрочные знаки

Скобки, подобные им символы и разделители

Круглые скобки «()» используются:

Квадратные скобки «» нередко применяются в значении группировки, когда приходится использовать много пар скобок. В таком случае они ставятся снаружи и (при аккуратной типографике) имеют бо́льшую высоту, чем скобки, стоя́щие внутри.

Квадратные «» и круглые «()» скобки используются при обозначении закрытых и открытых промежутков соответственно.

Фигурные скобки «{}» используются, как правило, для , хотя в отношении них справедлива та же оговорка, что и для квадратных скобок. Левая «{» и правая «}» скобки могут использоваться по отдельности; их назначение описано .

Символы угловых скобок « ⟨ ⟩ {\displaystyle \langle \;\rangle } » при аккуратной типографике должны иметь тупые углы и тем отличаться от схожих , имеющих прямой или острый угол. На практике же на это не следует надеяться (особенно, при ручной записи формул) и различать их приходится при помощи интуиции.

Часто используются пары симметричных (относительно вертикальной оси) символов, в том числе и отличных от перечисленных, для выделения куска формулы. Назначение парных скобок описано .

Индексы

В зависимости от расположения различают верхние и нижние индексы. Верхний индекс может означать (но необязательно означает) возведение в степень , об остальных случаях использования .

Переменные

В науках встречаются наборы величин, и любая из них может принимать или набор значений и называться переменной величиной (вариантой), или только одно значение и называться константой. В математике от физического смысла величины часто отвлекаются, и тогда переменная величина превращается в отвлечённую (или числовую) переменную, обозначаемую каким-нибудь символом, не занятым специальными обозначениями, о которых было сказано выше.

Переменная X считается заданной, если указано множество принимаемых ею значений {x} . Постоянную же величину удобно рассматривать как переменную, у которой соответствующее множество {x} состоит из одного элемента.

Функции и операторы

В математике не усматривается существенного различия между оператором (унарным), отображением и функцией .

Однако, подразумеваются, что если для записи значения отображения от заданных аргументов необходимо указывать , то символ оного отображения обозначает функцию, в иных случаях скорее говорят об операторе. Символы некоторых функций одного аргумента употребляются и со скобками и без. Многие элементарные функции , например sin ⁡ x {\displaystyle \sin x} или sin ⁡ (x) {\displaystyle \sin(x)} , но элементарные функции всегда называются функциями .

Операторы и отношения (унарные и бинарные)

Функции

Функция может упоминаться в двух смыслах: как выражение её значения при заданных аргументах (пишется f (x) , f (x , y) {\displaystyle f(x),\ f(x,y)} и т. п.) или собственно как функция. В последнем случае ставится только символ функции, без скобок (хотя зачастую пишут как попало).

Имеется много обозначений общепринятых функций, используемых в математических работах без дополнительных пояснений. В противном случае функцию надо как-то описывать и в фундаментальной математике она принципиально не отличается от и точно также обозначается произвольной буквой. Для обозначения функций-переменных наиболее популярна буква f , также часто применяются g и большинство греческих.

Предопределённые (зарезервированные) обозначения

Однако, однобуквенным обозначениям может быть, при желании, придан другой смысл. Например, буква i часто используется как обозначение индекса в контексте, где комплексные числа не применяются, а буква может быть использована как переменная в какой-нибудь комбинаторике . Также, символы теории множеств (такие как « ⊂ {\displaystyle \subset } » и « ⊃ {\displaystyle \supset } ») и исчисления высказываний (такие как « ∧ {\displaystyle \wedge } » и « ∨ {\displaystyle \vee } ») могут быть использованы в другом смысле, обычно как отношение порядка и бинарные операции соответственно.

Индексирование

Индексирование графически изображается (обычно нижними, иногда и верхними) и является, в некоторым смысле, способом расширить информационное наполнение переменной. Однако, употребляется оно в трёх несколько различных (хотя и перекрывающихся) смыслах.

Собственно номера

Можно иметь несколько разных переменных, обозначая их одной буквой, аналогично использованию . Например: x 1 , x 2 , x 3 … {\displaystyle x_{1},\ x_{2},\ x_{3}\ldots } . Обычно они связаны какой-то общностью, но вообще это не обязательно.

Более того, в качестве «индексов» можно использовать не только числа, но и любые символы. Однако, когда в виде индекса пишется другая переменная и выражение, данная запись интерпретируется как «переменная с номером, определяемым значением индексного выражения».

В тензорном анализе

В линейной алгебре , тензорном анализе , дифференциальной геометрии с индексами (в виде переменных) записываются

Как известно, математика любит точность и краткость - недаром одна-единственная формула может в словесной форме занимать абзац, а порой и целую страницу текста. Таким образом, графические элементы, используемые во всем мире в науке, призваны увеличить скорость написания и компактность представления данных. Кроме того, стандартизованные графические изображения может распознать носитель любого языка, имеющий базовые знания в соответствующей сфере.

История математических знаков и символов насчитывает много столетий - некоторые из них были придуманы случайным образом и предназначались для обозначения иных явлений; другие же стали продуктом деятельности ученых, целенаправленно формирующих искусственный язык и руководствующихся исключительно практическими соображениями.

Плюс и минус

История происхождения символов, обозначающих простейшие арифметические операции, доподлинно неизвестна. Однако существует достаточно вероятная гипотеза происхождения знака «плюс», имеющего вид перекрещенных горизонтальной и вертикальной черт. В соответствии с ней символ сложения берет начало в латинском союзе et, который переводится на русский язык как «и». Постепенно, с целью ускорения процесса записи, слово было сокращено до вертикально ориентированного креста, напоминающего букву t. Самый ранний достоверный пример подобного сокращения датируется XIV веком.

Общепринятый знак «минус» появился, по всей видимости, позже. В XIV и даже XV веке в научной литературе использовался целый ряд символов, обозначающих операцию вычитания, и лишь к XVI веку «плюс» и «минус» в их современном виде стали встречаться в математических трудах вместе.

Умножение и деление

Как ни странно, математические знаки и символы для этих двух арифметических действий не полностью стандартизованы и сегодня. Популярным обозначением умножения является предложенный математиком Отредом в XVII веке диагональный крестик, который можно увидеть, например, на калькуляторах. На уроках математики в школе ту же операцию обычно представляют в виде точки - данный способ предложил в том же веке Лейбниц. Ещё один способ представления - звёздочка, которая наиболее часто используется при компьютерном представлении различных расчётов. Использовать её предложил всё в том же XVII веке Иоганн Ран.

Для операции деления предусмотрены знак наклонной черты (предложен Отредом) и горизонтальная линия с точками сверху и снизу (символ ввел Иоганн Ран). Первый вариант обозначения является более популярным, однако второй также достаточно распространен.

Математические знаки и символы и их значения порой изменяются во времени. Однако все три способа графического представления умножения, а также оба способа для деления являются в той или иной степени состоятельными и актуальными на сегодняшний день.

Равенство, тождество, эквивалентность

Как и в случае многих других математических знаков и символов, обозначение равенства изначально было словесным. Достаточно продолжительное время общепринятым обозначением служило сокращение ae от латинского aequalis («равны»). Однако в XVI веке математик из Уэльса по имени Роберт Рекорд предложил в качестве символа две горизонтальные прямые, расположенные друг под другом. Как утверждал ученый, нельзя придумать ничего более равного между собой, чем два параллельных отрезка.

Несмотря на то что аналогичный знак использовался для обозначения параллельности прямых, новый символ равенства постепенно получил распространение. К слову, такие знаки как «больше» и «меньше», изображающие развернутые в разные стороны галочки, появились лишь в XVII-XVIII веке. Сегодня же они кажутся интуитивно понятными любому школьнику.

Несколько более сложные знаки эквивалентности (две волнистые линии) и тождества (три горизонтальные параллельные прямые) вошли в обиход лишь во второй половине XIX века.

Знак неизвестного - «Икс»

История возникновения математических знаков и символов знает и весьма интересные случаи переосмысления графики по мере развития науки. Знак обозначения неизвестного, именуемый сегодня «иксом», берет своё начало на Ближнем Востоке на заре прошлого тысячелетия.

Ещё в X веке в арабском мире, славящемся в тот исторический период своими учеными, понятие неизвестного обозначалось словом, буквально переводящимся как «нечто» и начинающимся со звука «Ш». С целью экономии материалов и времени слово в трактатах стало сокращаться до первой буквы.

Спустя многие десятилетия письменные труды арабских ученых оказались в городах Пиренейского полуострова, на территории современной Испании. Научные трактаты стали переводиться на национальный язык, но возникла трудность - в испанском отсутствует фонема «Ш». Заимствованные арабские слова, начинающиеся с неё, записывались по особому правилу и предварялись буквой X. Научным языком того времени была латынь, в которой соответствующий знак имеет название «Икс».

Таким образом, знак, на первый взгляд являющийся лишь случайно выбранным символом, имеет глубокую историю и изначально является сокращением арабского слова «нечто».

Обозначение других неизвестных

В отличие от «Икса», знакомые нам со школьной скамьи Y и Z, а также a, b, c имеют гораздо более прозаичную историю происхождения.

В XVII веке была издана книга Декарта под названием «Геометрия». В этой книге автор предлагал стандартизировать символы в уравнениях: в соответствии с его идеей, последние три буквы латинского алфавита (начиная от «Икса») стали обозначать неизвестные, а три первые - известные значения.

Тригонометрические термины

По-настоящему необычна история такого слова, как «синус».

Первоначально соответствующие тригонометрические функции получили название в Индии. Слово, соответствующее понятию синуса, буквально означало «тетива». В эпоху расцвета арабской науки индийские трактаты были переведены, а понятие, аналога которому не оказалось в арабском языке, транскрибировано. По стечению обстоятельств, то, что получилось на письме, напоминало реально существующее слово «впадина», семантика которого не имела никакого отношения к исходному термину. В результате, когда в 12 веке арабские тексты были переведены на латынь, возникло слово «синус», означающее «впадина» и закрепившееся в качестве нового математического понятия.

А вот математические знаки и символы для тангенса и котангенса до сих пор не стандартизованы - в одних странах их принято писать как tg, а в других - как tan.

Некоторые другие знаки

Как видно из примеров, описанных выше, возникновение математических знаков и символов в значительной мере пришлось на XVI-XVII века. На этот же период пришлось возникновение привычных сегодня форм записи таких понятий, как процент, квадратный корень, степень.

Процент, т. е. сотая доля, долгое время обозначался как cto (сокращение от лат. cento). Считается, что общепринятый на сегодняшний день знак появился в результате опечатки около четырехсот лет назад. Получившееся изображение было воспринято как удачный способ сокращения и прижилось.

Знак корня изначально представлял собой стилизованную букву R (сокращение от латинского слова radix - «корень»). Верхняя черта, под которую сегодня записывается выражение, выполняла функцию скобок и являлась отдельным символом, обособленным от корня. Круглые скобки были придуманы позже - в повсеместное обращение они вошли благодаря деятельности Лейбница (1646-1716). Благодаря его же трудам был введен в науку и символ интеграла, выглядящий как вытянутая буква S - сокращение от слова «сумма».

Наконец, знак операции возведения в степень был придуман Декартом и доработан Ньютоном во второй половине XVII века.

Более поздние обозначения

Учитывая, что знакомые нам графические изображения «плюса» и «минуса» были введены в обращение всего несколько столетий назад, не кажется удивительным, что математические знаки и символы, обозначающие сложные явления, стали использоваться лишь в позапрошлом веке.

Так, факториал, имеющий вид восклицательного знака после числа или переменной, появился лишь в начале XIX века. Приблизительно тогда же появились заглавная «П» для обозначения произведения и символ предела.

Несколько странно, что знаки для числа Пи и алгебраической суммы появились лишь в XVIII веке - позже, чем, например, символ интеграла, хотя интуитивно кажется, что они являются более употребительными. Графическое изображение отношения длины окружности к диаметру происходит от первой буквы греческих слов, означающих «окружность» и «периметр». А знак «сигма» для алгебраической суммы был предложен Эйлером в последней четверти XVIII столетия.

Названия символов на разных языках

Как известно, языком науки в Европе на протяжении многих веков была латынь. Физические, медицинские и многие другие термины часто заимствовались в виде транскрипций, значительно реже - в виде кальки. Таким образом, многие математические знаки и символы на английском называются почти так же, как на русском, французском или немецком. Чем сложнее суть явления, тем выше вероятность, что в разных языках оно будет иметь одинаковое название.

Компьютерная запись математических знаков

Простейшие математические знаки и символы в "Ворде" обозначаются обычной комбинацией клавиш Shift+цифра от 0 до 9 в русской или английской раскладке. Отдельные клавиши отведены под некоторые широкоупотребительные знаки: плюс, минус, равенство, наклонная черта.

Если же требуется использовать графические изображения интеграла, алгебраической суммы или произведения, числа Пи и т. д., требуется открыть в «Ворде» вкладку «Вставка» и найти одну из двух кнопок: «Формула» или «Символ». В первом случае откроется конструктор, позволяющий выстроить целую формулу в рамках одного поля, а во втором - таблица символов, где можно найти любые математические знаки.

Как запомнить математические символы

В отличие от химии и физики, где количество символов для запоминания может превосходить сотню единиц, математика оперирует относительно небольшим числом знаков. Простейшие из них мы усваиваем ещё в глубоком детстве, учась складывать и вычитать, и только в университете на определенных специальностях знакомимся с немногочисленными сложными математическими знаками и символами. Картинки для детей помогают за считанные недели достичь мгновенного узнавания графического изображения требуемой операции, гораздо больше времени может понадобиться для овладения навыком самого осуществления этих операций и понимания их сущности.

Таким образом, процесс запоминания знаков происходит автоматически и не требует особых усилий.

В заключение

Ценность математических знаков и символов заключается в том, что их без труда понимают люди, говорящие на разных языках и являющиеся носителями различных культур. По этой причине крайне полезно понимать и уметь воспроизводить графические изображения различных явлений и операций.

Высокий уровень стандартизации этих знаков обуславливает их использование в самых различных сферах: в области финансов, информационных технологий, инженерном деле и др. Для каждого, кто хочет заниматься делом, связанным с числами и расчетами, знание математических знаков и символов и их значений становится жизненной необходимостью.



Вверх